搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紧凑型冷原子高分辨成像系统光学设计

沈晓阳 成一灏 夏林

引用本文:
Citation:

紧凑型冷原子高分辨成像系统光学设计

沈晓阳, 成一灏, 夏林

Design of compact high resolution imaging system for cold atom experiments

Shen Xiao-Yang, Cheng Yi-Hao, Xia Lin
PDF
HTML
导出引用
  • 对真空腔内的冷原子进行高分辨成像通常需要原子与像平面之间保持较大的距离, 这不利于成像系统在光学元件密集的冷原子实验中实现. 设计了一套显著降低原子与像平面距离的高分辨成像系统, 实现了1 μm的分辨率与50倍的放大率. 仿真结果表明, 通过改变透镜间距, 可以适应0—15 mm厚度范围的真空窗口. 该成像系统由数值孔径为0.47的显微物镜和有效焦距为1826 mm的远摄物镜组合而成. 结合成像波长为470—1064 nm的仿真结果, 该系统可以对钠、锂、铯等不同种类的原子进行高分辨成像.
    In cold atom experiments, high resolution imaging systems have been used to extract in-situ density information when studying quantum gases, which is one of the hot topics in this field. Such a system is usually called “quantum-gas microscope”. In order to achieve a long working distance and large magnification, high resolution imaging of cold atoms through a vacuum window usually requires a long distance between the atoms and the camera. However, due to space limitation caused by a large number of nearby optical elements, it may be difficult to realize a long imaging system, which is a common case in cold atom experiments. Herein we present an imaging system that can achieve a short distance between the atoms and the image plane with diffraction-limited 1 μm resolution and 50 magnification. The telephoto lens design is adopted to reduce the back focal length and enhance the pointing stability of the imaging lens. The system is optimized at an operating wavelength of 767 nm and corrects aberrations induced by a 5-mm-thick silica vacuum window. At a working distance of 32 mm, a diffraction-limited field of view of 408 μm is obtained. The simulation result shows that by changing the air space between lenses, our design operates across a wide range of window thicknesses (0–15 mm), which makes it robust enough to be used in typical laboratories. This compact imaging system is made from commercial on-shelf Φ2 in (1 in = 2.54 cm) singlets and consists of two components: a microscope objective with a numerical aperture of 0.47 and a telephoto objective with a long effective focal length of 1826 mm. Both are infinitely corrected, allowing the distance between them to be adjusted to insert optical elements for irradiating atoms with laser beams of different wavelengths without affecting the imaging resolution. Taking the manufacturing and assembling tolerances into consideration, the Monte Carlo analyses show that more than 95% of the random samples are diffraction-limited within the field of view. This high success rate ensures that these two objectives can be achieved easily in the experiment. Combined with its performance with other wavelengths (470–1064 nm), this imaging system can be used for imaging different atom species, such as sodium, lithium, and cesium.
      通信作者: 夏林, linxia@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA1400900, 2021YFA0718302)和国家自然科学基金(批准号: 11874418)资助的课题.
      Corresponding author: Xia Lin, linxia@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400900, 2021YFA0718302) and the National Natural Science Foundation of China (Grant No. 11874418).
    [1]

    Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S 2010 Nature 467 68Google Scholar

    [2]

    Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T, Zwierlein M W 2015 Phys. Rev. Lett. 114 193001Google Scholar

    [3]

    Wei D, Rubio-Abadal A, Ye B, Machado F, Kemp J, Srakaew K, Hollerith S, Rui J, Gopalakrishnan S, Yao N Y, Bloch I, Zeiher J 2022 Science 376 716Google Scholar

    [4]

    Bakr W S, Gillen J I, Peng A, Fölling S, Greiner M 2009 Nature 462 74Google Scholar

    [5]

    Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, Folling S, Pollet L, Greiner M 2010 Science 329 547Google Scholar

    [6]

    Salim E A, Caliga S C, Pfeiffer J B, Anderson D Z 2013 Appl. Phys. Lett. 102 084104Google Scholar

    [7]

    Preiss P M, Ma R C, Tai M E, Lukin A, Rispoli M, Zupancic P, Lahini Y, Islam R, Greiner M 2015 Science 347 1229Google Scholar

    [8]

    Britton J W, Sawyer B C, Keith A C, Wang C C J, Freericks J K, Uys H, Biercuk M J, Bollinger J J 2012 Nature 484 489Google Scholar

    [9]

    Graham T M, Song Y, Scott J, Poole C, Phuttitarn L, Jooya K, Eichler P, Jiang X, Marra A, Grinkemeyer B, Kwon M, Ebert M, Cherek J, Lichtman M T, Gillette M, Gilbert J, Bowman D, Ballance T, Campbell C, Dahl E D, Crawford O, Blunt N S, Rogers B, Noel T, Saffman M 2022 Nature 604 457Google Scholar

    [10]

    Weiss D S, Saffman M 2017 Phys. Today 70 44Google Scholar

    [11]

    Wu X L, Liang X H, Tian Y Q, Yang F, Chen C, Liu Y C, Tey M K, You L 2021 Chin. Phys. B 30 020305Google Scholar

    [12]

    Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, Zhang J 2023 Nature 615 231Google Scholar

    [13]

    王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖 2023 物理学报 72 064201Google Scholar

    Wang L W, Liu F D, Li Y D, Han W, Meng Z M, Zhang J 2023 Acta Phys. Sin. 72 064201Google Scholar

    [14]

    Trisnadi J, Zhang M, Weiss L, Chin C 2022 Rev. Sci. Instrum. 93 083203Google Scholar

    [15]

    Raithel G, Duspayev A, Dash B, Carrasco S C, Goerz M H, Vuletić V, Malinovsky V S 2023 Quantum Sci. Technol. 8 014001Google Scholar

    [16]

    Rispoli M, Lukin A, Schittko R, Kim S, Tai M E, Léonard J, Greiner M 2019 Nature 573 385Google Scholar

    [17]

    Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J, Greiner M 2019 Science 364 256Google Scholar

    [18]

    Kaufman A M, Tai M E, Lukin A, Rispoli M, Schittko R, Preiss P M, Greiner M 2016 Science 353 794Google Scholar

    [19]

    Gemelke N, Zhang X B, Hung C L, Chin C 2009 Nature 460 995Google Scholar

    [20]

    Preiss P M, Ma R C, Tai M E, Simon J, Greiner M 2015 Phys. Rev. A 91 041602Google Scholar

    [21]

    Gempel M W, Hartmann T, Schulze T A, Voges K K, Zenesini A, Ospelkaus S 2019 Rev. Sci. Instrum. 90 053201Google Scholar

    [22]

    Knottnerus I H A, Pyatchenkov S, Onishchenko O, Urech A, Schreck F, Siviloglou G A 2020 Opt. Express 28 11106Google Scholar

    [23]

    Li S K, Li G, Yang P F, Wang Z H, Zhang P F, Zhang T C 2020 Opt. Express 28 36122Google Scholar

    [24]

    Li X, Zhou F, Ke M, Xu P, He X D, Wang J, Zhan M S 2018 Appl. Opt. 57 7584Google Scholar

    [25]

    Bennie L M, Starkey P T, Jasperse M, Billington C J, Anderson R P, Turner L D 2013 Opt. Express 21 9011Google Scholar

    [26]

    Shen C Y, Chen C, Wu X L, Dong S, Cui Y, You L, Tey M K 2020 Rev. Sci. Instrum. 91 063202Google Scholar

    [27]

    Li S K, Li G, Wu W, Fan Q, Tian Y L, Yang P, Zhang P F, Zhang T C 2020 Rev. Sci. Instrum. 91 043104Google Scholar

    [28]

    Pritchard J D, Isaacs J A, Saffman M 2016 Rev. Sci. Instrum. 87 073107Google Scholar

    [29]

    Müller T 2011 Ph. D. Dissertation (Zurich: ETH Zurich

    [30]

    徐睆垚, 徐亮, 沈先春, 徐寒杨, 孙永丰, 刘文清, 刘建国 2021 物理学报 70 184201Google Scholar

    Xu H Y, Xu L, Shen X C, Xu H Y, Sun Y F, Liu W Q, Liu J G 2021 Acta Phys. Sin. 70 184201Google Scholar

    [31]

    Fischer R, Tadic-Galeb B, Yoder P 2008 Optical System Design (2nd Ed.) (New York: McGraw-Hill Education) pp136–137

    [32]

    Knottnerus I 2018 M. S. Thesis (Amsterdam: University of Amsterdam

    [33]

    Alt W 2002 Optik 113 142Google Scholar

    [34]

    Gross H, Zügge H, Peschka M, Blechinger F 2006 Image Quality Criteria (Weinheim: Wiley-VCH) pp91–99

    [35]

    Öttl T 2019 M. S. Thesis (Innsbruck: University of Innsbruck

  • 图 1  成像系统的光路结构

    Fig. 1.  Layout of the imaging system.

    图 2  显微物镜的光路结构

    Fig. 2.  Layout of the microscope objective.

    图 3  显微物镜的仿真结果 (a) 不同视场角下出瞳不同位置光线的波像差(单位为767 nm); (b) 不同视场角下的点列图, 圆圈表示艾里斑大小; (c) 0.13°视场角时的MTF曲线, 插图为1000 cycles/mm处的MTF曲线

    Fig. 3.  Simulated results of the microscope objective. (a) Wavefront error at different positions of the exit pupil at different fields (The unit is 767 nm). (b) Spot diagrams at different fields. The black circles represent the Airy disks. (c) MTF curves at 1.0 field. The inset plots the MTF near 1000 cycles/mm.

    图 4  远摄物镜示意图

    Fig. 4.  Telephoto lens group.

    图 5  远摄物镜的光路结构

    Fig. 5.  Layout of the telephoto objective.

    图 6  远摄物镜的仿真结果 (a) 不同视场角下出瞳不同位置光线的波像差; (b)不同视场角下的点列图; (c) 0.13°视场角时的MTF曲线

    Fig. 6.  Simulated results of the telephoto objective: (a) Wavefront error inside the circular pupil at different fields; (b) spot diagrams at different fields; (c) MTF curves at 1.0 field.

    图 7  中心视场处的分辨率仿真 (a) 物平面上的USAF 1951分辨率板; (b) 像平面上的仿真结果; (c) 像平面上PSF的径向分布, 插图为PSF在像平面上的投影, 峰值对应斯特列尔比率

    Fig. 7.  Simulation of the system’s resolution at 0 field: (a) The USAF 1951 resolution target in the object plane; (b) the simulation result in the image plane; (c) PSF along the radial direction in the image plane. The inset in panel (c) shows the projection of the PSF on the image plane, where the peak value corresponds to the Strehl ratio.

    表 1  相机附近长焦成像镜组光路长度(L)的比对

    Table 1.  Comparison of the optical path lengths (L) of the long foci imaging lens group near the camera.

    Magnification L/mm Ref.
    40.6 $ \sim $1678 [21]
    32 1000 [23]
    18.9 1000 [24]
    21.4 1000 [25]
    14.9 1000 [28]
    50 874 This work
    下载: 导出CSV

    表 2  真空窗厚度范围(R)的比对

    Table 2.  Comparison of the vacuum window thickness ranges (R).

    NAR
    /mm
    Ref.
    0.526—10[21]
    0.553—7[23]
    0.783—7[23]
    0.440—13[24]
    0.45—7[27]
    0.470—15This work
    下载: 导出CSV

    表 3  成像系统的设计要求

    Table 3.  Design requirements of the imaging system.

    ItemsSpecifications
    Resolution/μm1
    Wavelength/nm767
    Working distance/mm>20
    Magnification50
    Track length/m<1
    Image diameter/mm8.2
    下载: 导出CSV

    表 4  显微物镜的参数

    Table 4.  Specifications of the microscope objective.

    Surface No. Radius/mm Thickness/mm Material
    1 Infinity 4.00 N-BK7
    2 51.46 31.50(d1) Air
    3 127.37 8.12 N-BK7
    4 –127.37 0.50 Air
    5 256.59 5.52 N-BK7
    6 –256.59 0.50 Air
    7 47.87 7.29 N-BK7
    8 119.32 1.40 Air
    9 30.34 9.70 N-BK7
    10 65.80 17.0264 Air
    11 Infinity 5.00 Silica
    12 Infinity 15.00 Vacuum
    下载: 导出CSV

    表 5  公差分析中使用的公差值

    Table 5.  Tolerances used in the tolerance analysis.

    Tolerance typeItemsValue
    Manufacturing toleranceLens thickness±0.1 mm
    Air space±0.05 mm
    Radii±3${\lambda _{633}}$
    Refractive index±0.001
    Centering±3 arcmin
    Assembling toleranceDecentration±0.05 mm
    Clear aperture tilt±0.02°
    下载: 导出CSV

    表 6  远摄物镜的参数

    Table 6.  Specifications of the telephoto objective.

    Surface No. Radius/mm Thicknesses/mm Material
    1 64.38 8.22 N-BK7
    2 Infinity 9.60(d2) Air
    3 –517.255 2.50 N-BK7
    4 517.255 71.00(d3) Air
    5 –38.59 3.50 N-BK7
    6 Infinity 772.016 Air
    7 Infinity 1.50 Silica
    8 Infinity 5.55 Vacuum
    下载: 导出CSV

    表 7  不同真空窗厚度与波长下的表现

    Table 7.  Performance of the imaging system at different window thicknesses and wavelengths.

    Wavelength/nm Window
    thickness/mm
    d1/mm d2/mm d3/mm Diffraction-limited
    FOV/μm
    Magnification Track
    length/mm
    470 0 26.1 226 –48.8 963
    5 31.4 0.624 83.9 230 –51.5 969
    15 50.8 173 –50.0 827
    767 0 26.2 398 –47.7 986
    5 31.5 9.6 71.0 408 –50.6 993
    15 50.8 404 –61.6 1013
    1064 0 26.2 440 –48.9 1022
    5 31.4 11.0 69.4 440 –51.7 1028
    15 50.5 502 –63.0 1048
    下载: 导出CSV
  • [1]

    Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S 2010 Nature 467 68Google Scholar

    [2]

    Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T, Zwierlein M W 2015 Phys. Rev. Lett. 114 193001Google Scholar

    [3]

    Wei D, Rubio-Abadal A, Ye B, Machado F, Kemp J, Srakaew K, Hollerith S, Rui J, Gopalakrishnan S, Yao N Y, Bloch I, Zeiher J 2022 Science 376 716Google Scholar

    [4]

    Bakr W S, Gillen J I, Peng A, Fölling S, Greiner M 2009 Nature 462 74Google Scholar

    [5]

    Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, Folling S, Pollet L, Greiner M 2010 Science 329 547Google Scholar

    [6]

    Salim E A, Caliga S C, Pfeiffer J B, Anderson D Z 2013 Appl. Phys. Lett. 102 084104Google Scholar

    [7]

    Preiss P M, Ma R C, Tai M E, Lukin A, Rispoli M, Zupancic P, Lahini Y, Islam R, Greiner M 2015 Science 347 1229Google Scholar

    [8]

    Britton J W, Sawyer B C, Keith A C, Wang C C J, Freericks J K, Uys H, Biercuk M J, Bollinger J J 2012 Nature 484 489Google Scholar

    [9]

    Graham T M, Song Y, Scott J, Poole C, Phuttitarn L, Jooya K, Eichler P, Jiang X, Marra A, Grinkemeyer B, Kwon M, Ebert M, Cherek J, Lichtman M T, Gillette M, Gilbert J, Bowman D, Ballance T, Campbell C, Dahl E D, Crawford O, Blunt N S, Rogers B, Noel T, Saffman M 2022 Nature 604 457Google Scholar

    [10]

    Weiss D S, Saffman M 2017 Phys. Today 70 44Google Scholar

    [11]

    Wu X L, Liang X H, Tian Y Q, Yang F, Chen C, Liu Y C, Tey M K, You L 2021 Chin. Phys. B 30 020305Google Scholar

    [12]

    Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, Zhang J 2023 Nature 615 231Google Scholar

    [13]

    王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖 2023 物理学报 72 064201Google Scholar

    Wang L W, Liu F D, Li Y D, Han W, Meng Z M, Zhang J 2023 Acta Phys. Sin. 72 064201Google Scholar

    [14]

    Trisnadi J, Zhang M, Weiss L, Chin C 2022 Rev. Sci. Instrum. 93 083203Google Scholar

    [15]

    Raithel G, Duspayev A, Dash B, Carrasco S C, Goerz M H, Vuletić V, Malinovsky V S 2023 Quantum Sci. Technol. 8 014001Google Scholar

    [16]

    Rispoli M, Lukin A, Schittko R, Kim S, Tai M E, Léonard J, Greiner M 2019 Nature 573 385Google Scholar

    [17]

    Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J, Greiner M 2019 Science 364 256Google Scholar

    [18]

    Kaufman A M, Tai M E, Lukin A, Rispoli M, Schittko R, Preiss P M, Greiner M 2016 Science 353 794Google Scholar

    [19]

    Gemelke N, Zhang X B, Hung C L, Chin C 2009 Nature 460 995Google Scholar

    [20]

    Preiss P M, Ma R C, Tai M E, Simon J, Greiner M 2015 Phys. Rev. A 91 041602Google Scholar

    [21]

    Gempel M W, Hartmann T, Schulze T A, Voges K K, Zenesini A, Ospelkaus S 2019 Rev. Sci. Instrum. 90 053201Google Scholar

    [22]

    Knottnerus I H A, Pyatchenkov S, Onishchenko O, Urech A, Schreck F, Siviloglou G A 2020 Opt. Express 28 11106Google Scholar

    [23]

    Li S K, Li G, Yang P F, Wang Z H, Zhang P F, Zhang T C 2020 Opt. Express 28 36122Google Scholar

    [24]

    Li X, Zhou F, Ke M, Xu P, He X D, Wang J, Zhan M S 2018 Appl. Opt. 57 7584Google Scholar

    [25]

    Bennie L M, Starkey P T, Jasperse M, Billington C J, Anderson R P, Turner L D 2013 Opt. Express 21 9011Google Scholar

    [26]

    Shen C Y, Chen C, Wu X L, Dong S, Cui Y, You L, Tey M K 2020 Rev. Sci. Instrum. 91 063202Google Scholar

    [27]

    Li S K, Li G, Wu W, Fan Q, Tian Y L, Yang P, Zhang P F, Zhang T C 2020 Rev. Sci. Instrum. 91 043104Google Scholar

    [28]

    Pritchard J D, Isaacs J A, Saffman M 2016 Rev. Sci. Instrum. 87 073107Google Scholar

    [29]

    Müller T 2011 Ph. D. Dissertation (Zurich: ETH Zurich

    [30]

    徐睆垚, 徐亮, 沈先春, 徐寒杨, 孙永丰, 刘文清, 刘建国 2021 物理学报 70 184201Google Scholar

    Xu H Y, Xu L, Shen X C, Xu H Y, Sun Y F, Liu W Q, Liu J G 2021 Acta Phys. Sin. 70 184201Google Scholar

    [31]

    Fischer R, Tadic-Galeb B, Yoder P 2008 Optical System Design (2nd Ed.) (New York: McGraw-Hill Education) pp136–137

    [32]

    Knottnerus I 2018 M. S. Thesis (Amsterdam: University of Amsterdam

    [33]

    Alt W 2002 Optik 113 142Google Scholar

    [34]

    Gross H, Zügge H, Peschka M, Blechinger F 2006 Image Quality Criteria (Weinheim: Wiley-VCH) pp91–99

    [35]

    Öttl T 2019 M. S. Thesis (Innsbruck: University of Innsbruck

  • [1] 黄一帆, 邢阳光, 沈文杰, 彭吉龙, 代树武, 王颖, 段紫雯, 闫雷, 刘越, 李林. 亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学设计. 物理学报, 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [2] 李月, 李竣, 薛正跃, 王晶晶, 王贵师, 高晓明, 谈图. 本振光功率锁定方法应用于激光外差辐射计的研究. 物理学报, 2023, 72(9): 093201. doi: 10.7498/aps.72.20230261
    [3] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法. 物理学报, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [4] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展. 物理学报, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [5] 邱乙耕, 范元媛, 颜博霞, 王延伟, 吴一航, 韩哲, 亓岩, 鲁平. 光声光谱仪用三维扩展光源光场整形系统设计与实验. 物理学报, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [6] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统. 物理学报, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [7] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [8] 张旭琳, 杨伟, 罗统政, 黄燕燕, 雷蕾, 李贵君, 徐平. 集成化导光板下表面微棱镜二维分布公式探究. 物理学报, 2019, 68(21): 218501. doi: 10.7498/aps.68.20190854
    [9] 冯帅, 常军, 牛亚军, 穆郁, 刘鑫. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法. 物理学报, 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [10] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕. 集成化导光板下表面微棱镜二维分布设计. 物理学报, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [11] 操超, 廖志远, 白瑜, 范真节, 廖胜. 基于矢量像差理论的离轴反射光学系统初始结构设计. 物理学报, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [12] 刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计. 物理学报, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [13] 刘岩, 李健军, 高冬阳, 翟文超, 胡友勃, 郭园园, 夏茂鹏, 郑小兵. I类自发参量下转换相关光子圆环的时间相关特性研究. 物理学报, 2016, 65(19): 194211. doi: 10.7498/aps.65.194211
    [14] 吕向博, 朱菁, 杨宝喜, 黄惠杰. 基于ybar-y图的光学结构计算方法研究. 物理学报, 2015, 64(11): 114201. doi: 10.7498/aps.64.114201
    [15] 沈本兰, 常军, 王希, 牛亚军, 冯树龙. 三反射主动变焦系统设计. 物理学报, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [16] 裴琳琳, 吕群波, 王建威, 刘扬阳. 编码孔径成像光谱仪光学系统设计. 物理学报, 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [17] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [18] 温昌礼, 季家镕, 窦文华, 冯向华, 徐蓉, 门涛, 刘长海. 制备多模聚硅氧烷光波导关键技术的改进. 物理学报, 2012, 61(9): 094202. doi: 10.7498/aps.61.094202
    [19] 董科研, 孙 强, 李永大, 张云翠, 王 健, 葛振杰, 孙金霞, 刘建卓. 折射/衍射混合红外双焦光学系统设计. 物理学报, 2006, 55(9): 4602-4607. doi: 10.7498/aps.55.4602
    [20] 王 方, 朱启华, 蒋东镔, 张清泉, 邓 武, 景 峰. 多程放大系统主放大级光学优化设计. 物理学报, 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
计量
  • 文章访问数:  2393
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-23
  • 修回日期:  2023-12-01
  • 上网日期:  2023-12-15
  • 刊出日期:  2024-03-20

/

返回文章
返回