搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成化导光板下表面微棱镜二维分布公式探究

张旭琳 杨伟 罗统政 黄燕燕 雷蕾 李贵君 徐平

引用本文:
Citation:

集成化导光板下表面微棱镜二维分布公式探究

张旭琳, 杨伟, 罗统政, 黄燕燕, 雷蕾, 李贵君, 徐平

Two-dimensional distribution expressions of micro-prism on bottom surface of partial integrated light guide plate

Zhang Xu-Lin, Yang Wei, Luo Tong-Zheng, Huang Yan-Yan, Lei Lei, Li Gui-Jun, Xu Ping
PDF
HTML
导出引用
  • 集成化导光板下表面微结构分布设计是提高背光模组亮度均匀性的关键因素之一. 本文提出了小尺寸集成化导光板下表面微棱镜二维分布公式, 给出了微棱镜二维分布公式系数与导光板结构参数之间的关系表达式. 将上述公式组直接应用于不同结构参数的小尺寸集成化导光板下表面微棱镜二维分布设计, 无需借助设计人员的经验, 可直接获得亮度均匀性较高时的集成化导光板下表面微棱镜二维分布, 出射光亮度均匀性平均值可达84.94%. 仿真结果表明, 本文提出的微棱镜二维分布公式及系数关系表达式具有重要应用价值, 极大地节省了集成化背光模组的设计优化时间, 对于导光板表面微结构分布设计具有重要的参考价值.
    The design of the microstructure distribution on the bottom surface of the partial integrated light guide plate (PILGP) is one of the key factors to improve the luminance uniformity of the partial integrated backlight module (BLM). In this paper, the two-dimensional micro-prism expressions on the bottom surface of the small-sized PILGP are presented. The two-dimensional micro-prism expressions make the micro-prisms spread out on a two-dimensional scale of the bottom surface of the PILGP. By fitting and analyzing a large number of simulation data, the relationship expressions between the coefficients of the two-dimensional micro-prism expressions and the structural parameters of the PILGP are established. The above expressions are directly applied to the two-dimensional distribution design of micro-prism on the bottom surface of small-sized PILGPs with different structural parameters. Without the help of the designers’ experience and the multiple simulations of the software, the average value of luminance uniformity in the partial integrated BLMs is obtained to be 84.94%. The simulation results show that the two-dimensional micro-prism expressions and coefficient relation-expressions presented in this paper have important application value. Take the 5-inch partial integrated BLM for example. The two-dimensional distribution of the micro-prism on the bottom surface of the PILGP with high luminance uniformity can be obtained directly by using the above expressions. By fine-tuning the coefficients of two-dimensional micro-prism expressions, calculated by the coefficient relation-expressions, the utilization of light energy, illuminance uniformity and luminance uniformity of the partial integrated BLM respectively reach 90.69%, 88.02% and 92.17%, which meet the practical requirements. The optimization and design time of the partial integrated BLM are both greatly saved. Further, the two-dimensional micro-prism expressions on the bottom surface of the PILGP are analyzed and the physical mechanism is explained reasonably. This work is of significance for the distribution design of the microstructures on the surface of the LGP.
      通信作者: 徐平, xuping@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61275167)和深圳市基础研究计划(批准号: JCYJ20180305125430954, JCYJ20140418095735591, JCYJ20130329103020637)资助的课题.
      Corresponding author: Xu Ping, xuping@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275167) and the Shenzhen Research Foundation for Basic Research, China (Grant Nos. JCYJ20180305125430954, JCYJ20140418095735591, JCYJ20130329103020637).
    [1]

    Pan J W, Fan C W 2011 Opt. Express 19 20079Google Scholar

    [2]

    Moon H R, Shin M H, Lee J Y, Jang K J, Chung Y O, Kim Y J 2015 J. Disp. Technol. 11 44

    [3]

    Li C Y, Pan J W 2014 Appl. Opt. 53 1503Google Scholar

    [4]

    Chen C F, Kuo S H 2014 J. Disp. Technol. 10 1030Google Scholar

    [5]

    Chen B T, Pan J W 2015 Appl. Opt. 54 E80Google Scholar

    [6]

    Huang B L, Lin J T, Ye Y, Xu S, Chen E G, Guo T L 2017 Opt. Laser Technol. 97 254Google Scholar

    [7]

    Lin S F, Su C Y, Feng Z Y, Li X D 2017 J. Phys. D: Appl. Phys. 50 435601

    [8]

    Chen B T, Pan J W 2018 Appl. Opt. 57 4386Google Scholar

    [9]

    Xu P, Luo T Z, Zhang X L, Su Z J, Huang Y Y, Li X C, Zou Y 2018 Opt. Commun. 427 589Google Scholar

    [10]

    徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕 2019 物理学报 68 038502Google Scholar

    Xu P, Yang W, Zhang X L, Luo T Z, Huang Y Y 2019 Acta Phys. Sin. 68 038502Google Scholar

    [11]

    Xu P, Yan Z L, Wan L L, Huang H X 2004 Proceedings of SPIE Holography Diffractive Optics and Applications II Beijing, China, November 8−11, 2004 p66

    [12]

    Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 Opt. Express 21 20159Google Scholar

    [13]

    Xu P, Huang Y Y, Su Z J, Zhang X L 2014 Appl. Opt. 53 1322Google Scholar

    [14]

    Xu P, Huang Y Y, Su Z J, Zhang X L, Luo T Z, Peng W D 2015 Opt. Express 23 4887Google Scholar

    [15]

    Xu P, Huang H X, Wang K, Ruan S C, Yang J, Wan L L, Chen X X, Liu J Y 2007 Opt. Express 15 809Google Scholar

    [16]

    黄海璇, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕 2015 物理学报 64 154212Google Scholar

    Huang H X, Xu P, Ruan S C, Yang T, Yuan X, Huang Y Y 2015 Acta Phys. Sin. 64 154212Google Scholar

    [17]

    Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177Google Scholar

    [18]

    Xu P, Hong C Q, Cheng G X, Zhou L, Sun Z L 2015 Opt. Express 23 6773Google Scholar

    [19]

    Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T, Peng W D 2016 Nanoscale Res. Lett. 11 485Google Scholar

    [20]

    徐平, 袁霞, 杨拓, 黄海璇, 唐少拓, 黄燕燕, 肖钰斐, 彭文达 2017 物理学报 66 124201Google Scholar

    Xu P, Yuan X, Yang T, Huang H X, Tang S T, Huang Y Y, Xiao Y F, Peng W D 2017 Acta Phys. Sin. 66 124201Google Scholar

    [21]

    徐平, 唐少拓, 袁霞, 黄海璇, 杨拓, 罗统政, 喻珺 2018 物理学报 67 024202Google Scholar

    Xu P, Tang S T, Yuan X, Huang H X, Yang T, Luo T Z, Yu J 2018 Acta Phys. Sin. 67 024202Google Scholar

    [22]

    陈祥贤, 徐平, 黄洁锋, 张旭琳, 王冰, 李贝贝 2009 光学学报 29 2516

    Chen X X, Xu P, Huang J F, Zhang X L, Wang B, Li B B 2009 Acta Opt. Sin. 29 2516

    [23]

    Kim Y C 2013 Optik 124 2171Google Scholar

  • 图 1  集成化背光模组结构示意图

    Fig. 1.  Diagram of partial integrated backlight module.

    图 2  PILGP下表面微棱镜二维分布示意图

    Fig. 2.  Two-dimensional distribution of micro-prism on the bottom surface of PILGP.

    图 3  优化系数By与导光板宽度W的拟合曲线

    Fig. 3.  Fitting curve of optimized By and W.

    图 4  优化系数Bx与导光板长度L的拟合曲线

    Fig. 4.  Fitting curve of optimized Bx and L.

    图 5  优化系数Cx与导光板长度L的拟合曲线

    Fig. 5.  Fitting curve of optimized Cx and L.

    表 1  5英寸集成化背光模组结构参数

    Table 1.  Structural parameters of 5-inch partial integrated backlight module.

    项目结构参数
    PILGP材料和尺寸 聚甲基丙烯酸甲酯(PMMA), 116.3 mm × 68.7 mm × 0.5 mm
    PILGP上表面结构高度88.6 μm、宽度180 μm、长度116 mm的ASCMCS单元, 密排
    PILGP下表面结构底宽0.049 mm、长度0.1 mm、α = 50°、β = 90°的内凹型微棱镜单元
    LED发光强度和尺寸6.6646 lm, 朗伯分布, 发散角110°, 1.2 mm × 2.5 mm × 0.4 mm
    LED数量和间距10个, 6.56 mm, 等间距分布于PILGP的短边
    平面反射膜反射率95%
    下载: 导出CSV

    表 2  不同导光板宽度W下优化、计算系数By以及对应的背光模组亮度均匀性仿真值

    Table 2.  Simulation results of luminance uniformity with optimized and calculated By at different widths W of PILGPs.

    W/mm优化By计算By亮度均匀性%
    优化By计算By
    42.50.246370.2362792.8590.47
    68.70.239670.2481894.2293.81
    95.00.249830.2601388.6685.70
    108.00.267500.2660489.6291.27
    134.20.285000.2779485.8583.53
    147.30.284100.2839085.7283.17
    下载: 导出CSV

    表 3  不同导光板长度L下的计算系数BxCx对应的亮度均匀性仿真值

    Table 3.  Simulation results of luminace uniformity with calculated Bx and Cx at different lengths L of PILGPs.

    L/mm计算Bx计算Cx亮度均匀性/%
    101.10.690210.02007281.35
    108.70.703970.02045688.84
    116.30.717720.02084081.57
    123.60.730940.02120980.91
    130.80.743970.02157385.89
    137.90.756820.02193280.85
    145.10.769850.02229586.63
    下载: 导出CSV

    表 4  PILGP下表面微棱镜二维分布的不同尺寸背光模组亮度均匀性

    Table 4.  Luminance uniformity of partial integrated backlight module with two-dimensional distribution of micro-prism on the bottom surface of PILGPs at different sizes.

    PILGP尺寸/inchL/mmW/mm亮度均匀性/%
    4.7108.666.387.52
    5.2119.573.184.24
    5.5132.365.691.49
    5.8139.369.080.05
    6.1146.172.481.38
    下载: 导出CSV

    表 5  分别具有BPO及分布公式组优化的微棱镜二维分布的5英寸背光模组性能参数仿真结果

    Table 5.  Simulation results of performance parameters in 5-inch partial integrated backlight modules with two-dimensional distribution of micro-prism optimized by BPO or distribution expressions.

    性能参数微棱镜二维分布优化模式
    公式组BPO
    光能利用率/%90.6992.03
    平均照度/Lux8462.18571.0
    平均亮度/Nit6135.46394.6
    照度均匀性/%88.0287.07
    亮度均匀性/%92.1791.94
    下载: 导出CSV
  • [1]

    Pan J W, Fan C W 2011 Opt. Express 19 20079Google Scholar

    [2]

    Moon H R, Shin M H, Lee J Y, Jang K J, Chung Y O, Kim Y J 2015 J. Disp. Technol. 11 44

    [3]

    Li C Y, Pan J W 2014 Appl. Opt. 53 1503Google Scholar

    [4]

    Chen C F, Kuo S H 2014 J. Disp. Technol. 10 1030Google Scholar

    [5]

    Chen B T, Pan J W 2015 Appl. Opt. 54 E80Google Scholar

    [6]

    Huang B L, Lin J T, Ye Y, Xu S, Chen E G, Guo T L 2017 Opt. Laser Technol. 97 254Google Scholar

    [7]

    Lin S F, Su C Y, Feng Z Y, Li X D 2017 J. Phys. D: Appl. Phys. 50 435601

    [8]

    Chen B T, Pan J W 2018 Appl. Opt. 57 4386Google Scholar

    [9]

    Xu P, Luo T Z, Zhang X L, Su Z J, Huang Y Y, Li X C, Zou Y 2018 Opt. Commun. 427 589Google Scholar

    [10]

    徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕 2019 物理学报 68 038502Google Scholar

    Xu P, Yang W, Zhang X L, Luo T Z, Huang Y Y 2019 Acta Phys. Sin. 68 038502Google Scholar

    [11]

    Xu P, Yan Z L, Wan L L, Huang H X 2004 Proceedings of SPIE Holography Diffractive Optics and Applications II Beijing, China, November 8−11, 2004 p66

    [12]

    Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 Opt. Express 21 20159Google Scholar

    [13]

    Xu P, Huang Y Y, Su Z J, Zhang X L 2014 Appl. Opt. 53 1322Google Scholar

    [14]

    Xu P, Huang Y Y, Su Z J, Zhang X L, Luo T Z, Peng W D 2015 Opt. Express 23 4887Google Scholar

    [15]

    Xu P, Huang H X, Wang K, Ruan S C, Yang J, Wan L L, Chen X X, Liu J Y 2007 Opt. Express 15 809Google Scholar

    [16]

    黄海璇, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕 2015 物理学报 64 154212Google Scholar

    Huang H X, Xu P, Ruan S C, Yang T, Yuan X, Huang Y Y 2015 Acta Phys. Sin. 64 154212Google Scholar

    [17]

    Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177Google Scholar

    [18]

    Xu P, Hong C Q, Cheng G X, Zhou L, Sun Z L 2015 Opt. Express 23 6773Google Scholar

    [19]

    Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T, Peng W D 2016 Nanoscale Res. Lett. 11 485Google Scholar

    [20]

    徐平, 袁霞, 杨拓, 黄海璇, 唐少拓, 黄燕燕, 肖钰斐, 彭文达 2017 物理学报 66 124201Google Scholar

    Xu P, Yuan X, Yang T, Huang H X, Tang S T, Huang Y Y, Xiao Y F, Peng W D 2017 Acta Phys. Sin. 66 124201Google Scholar

    [21]

    徐平, 唐少拓, 袁霞, 黄海璇, 杨拓, 罗统政, 喻珺 2018 物理学报 67 024202Google Scholar

    Xu P, Tang S T, Yuan X, Huang H X, Yang T, Luo T Z, Yu J 2018 Acta Phys. Sin. 67 024202Google Scholar

    [22]

    陈祥贤, 徐平, 黄洁锋, 张旭琳, 王冰, 李贝贝 2009 光学学报 29 2516

    Chen X X, Xu P, Huang J F, Zhang X L, Wang B, Li B B 2009 Acta Opt. Sin. 29 2516

    [23]

    Kim Y C 2013 Optik 124 2171Google Scholar

  • [1] 沈晓阳, 成一灏, 夏林. 紧凑型冷原子高分辨成像系统光学设计. 物理学报, 2024, 73(6): 066701. doi: 10.7498/aps.73.20231689
    [2] 黄一帆, 邢阳光, 沈文杰, 彭吉龙, 代树武, 王颖, 段紫雯, 闫雷, 刘越, 李林. 亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学设计. 物理学报, 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [3] 李月, 李竣, 薛正跃, 王晶晶, 王贵师, 高晓明, 谈图. 本振光功率锁定方法应用于激光外差辐射计的研究. 物理学报, 2023, 72(9): 093201. doi: 10.7498/aps.72.20230261
    [4] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法. 物理学报, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [5] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展. 物理学报, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [6] 邱乙耕, 范元媛, 颜博霞, 王延伟, 吴一航, 韩哲, 亓岩, 鲁平. 光声光谱仪用三维扩展光源光场整形系统设计与实验. 物理学报, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [7] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统. 物理学报, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [8] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [9] 张娟, 焦志强, 闫华杰, 陈福栋, 黄清雨, 康亮亮, 刘晓云, 王路, 袁广才. 微腔效应对顶发射串联蓝光有机电致发光器件性能的影响. 物理学报, 2020, 69(9): 096104. doi: 10.7498/aps.69.20191576
    [10] 刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计. 物理学报, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [11] 冯帅, 常军, 牛亚军, 穆郁, 刘鑫. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法. 物理学报, 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [12] 操超, 廖志远, 白瑜, 范真节, 廖胜. 基于矢量像差理论的离轴反射光学系统初始结构设计. 物理学报, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [13] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕. 集成化导光板下表面微棱镜二维分布设计. 物理学报, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [14] 吕向博, 朱菁, 杨宝喜, 黄惠杰. 基于ybar-y图的光学结构计算方法研究. 物理学报, 2015, 64(11): 114201. doi: 10.7498/aps.64.114201
    [15] 裴琳琳, 吕群波, 王建威, 刘扬阳. 编码孔径成像光谱仪光学系统设计. 物理学报, 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [16] 沈本兰, 常军, 王希, 牛亚军, 冯树龙. 三反射主动变焦系统设计. 物理学报, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [17] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [18] 温昌礼, 季家镕, 窦文华, 冯向华, 徐蓉, 门涛, 刘长海. 制备多模聚硅氧烷光波导关键技术的改进. 物理学报, 2012, 61(9): 094202. doi: 10.7498/aps.61.094202
    [19] 董科研, 孙 强, 李永大, 张云翠, 王 健, 葛振杰, 孙金霞, 刘建卓. 折射/衍射混合红外双焦光学系统设计. 物理学报, 2006, 55(9): 4602-4607. doi: 10.7498/aps.55.4602
    [20] 王 方, 朱启华, 蒋东镔, 张清泉, 邓 武, 景 峰. 多程放大系统主放大级光学优化设计. 物理学报, 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
计量
  • 文章访问数:  7707
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-01
  • 修回日期:  2019-08-01
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回