搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双随机相位编码的局部混合光学加密系统

许祥馨 常军 武楚晗 宋大林

引用本文:
Citation:

基于双随机相位编码的局部混合光学加密系统

许祥馨, 常军, 武楚晗, 宋大林

Local hybrid optical encryption system based on double random phase encoding

Xu Xiang-Xin, Chang Jun, Wu Chu-Han, Song Da-Lin
PDF
HTML
导出引用
  • 针对目前图像的选择性加密无法通过光学结构实现的问题, 通过光学设计方法, 将基于4f系统的双随机相位编码技术和基于衍射系统的双随机相位编码技术相结合, 提出了一种基于双随机相位编码的局部混合光学加密系统. 在该系统中, 原始图像被分为重要信息和非重要信息, 重要信息在4f系统中进行加密, 非重要信息在衍射系统中进行加密, 用4f系统密文替换掉衍射系统密文中的一部分, 得到最终的加密图像. 解密为加密的逆过程, 将4f系统密文从最终密文中剪切出来后, 用其还原出衍射系统密文中被替换掉的信息, 从而得到完整的衍射系统密文, 两个密文分别经过各自对应系统的逆过程后完成解密. 该方法实现了通过光学结构对图像进行选择性加密, 安全有效, 具有良好的鲁棒性. 通过仿真实验验证了该方法的有效性, 利用相关系数对该方法的加密和解密效果进行了评估, 验证了该方法的安全性.
    Most of the existing selective encryption schemes are based on image processing and cannot be realized by optical structures, so their practicality is limited. Combining the optical design, a local hybrid optical encryption system based on double random phase encoding is proposed. The system proposed in this paper possesses a common aperture and dual optical path structure, which is widely used in optical design and can effectively improve the practicality of optical encryption system. First, important information and non-important information in the original image are separated by a selective beam splitter. Then light waves carrying important information enter into the 4f system for encryption, and light waves carrying non-important information enter into the diffraction system for encryption. Finally, part of the diffraction system ciphertext is replaced with 4f system ciphertext to obtain the final encrypted image. Decryption is the reverse process of encryption. First, the 4f system ciphertext is cut out from the final ciphertext. Then the 4f system ciphertext is used to restore the information replaced in the diffraction system ciphertext, thereby obtaining the complete diffraction system ciphertext. Finally, the two ciphertexts go through the reverse process of their respective systems to complete the decryption. By comparing the statistical characteristics and mean square error of the original image and the encrypted image, the effectiveness of the proposed system's encryption process is proved. By analyzing the peak signal-to-noise ratio of the original image and the decrypted image, the effectiveness of the proposed system's decryption process is proved. The sensitivity of each key of the system is analyzed to prove the security of the system. Especially the system is highly sensitive to selective encryption key, which proves the effectiveness and security of the proposed system for selective encryption. Through simulation, it is verified that the proposed system is very resistant to diffraction attacks. Even if he can obtain all the diffraction keys, the attacker still cannot obtain the selectively encrypted information. Finally, through simulation, it is verified that the proposed system has good noise resistance and crop resistance, and high robustness as well. The proposed system can realize the selective encryption through optical structure, which is safe, effective and highly robust, and thus improving the practicality of selective optical encryption system.
      通信作者: 常军, optics_chang@126.com
    • 基金项目: 国家自然科学基金(批准号: 61471039)资助的课题
      Corresponding author: Chang Jun, optics_chang@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471039)
    [1]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [2]

    Tajahuerce E, Javidi B 2001 Appl. Opt. 39 6595

    [3]

    Javidi B 2000 Opt. Eng. 39 2031Google Scholar

    [4]

    Wu C H, Chang J, Quan C G, Zhang Y J 2020 Opt. Commun. 462 125347Google Scholar

    [5]

    Yu H H, Chang J, Liu X, Wu C H, He Y F, Zhang Y J 2017 Opt. Express 25 8860Google Scholar

    [6]

    Sui L S, Gao B 2013 Opt. Laser Technol. 48 117Google Scholar

    [7]

    He W Q, Peng X, Meng X F 2012 J. Opt. 14 075401Google Scholar

    [8]

    Unnikrishnan G, Joseph J, Singh K 2000 Opt. Lett. 25 887Google Scholar

    [9]

    Situ G H, Zhang J J 2004 Opt. Lett. 29 1854

    [10]

    Unnikrishnan G 2000 Opt. Eng. 39 2853Google Scholar

    [11]

    彭翔, 汤红乔, 田劲东 2007 物理学报 56 2629Google Scholar

    Peng X, Tang H Q, Tian J D 2007 Acta Phys. Sin. 56 2629Google Scholar

    [12]

    Peng X, Zhang P, Wei H Z, Yu B 2006 Opt. Lett. 31 1044Google Scholar

    [13]

    Wu C H, Chang J, Xu X X, Zhang Y J 2019 Opt. Commun. 450 87Google Scholar

    [14]

    Shi Y S, Situ G H, Zhang J J 2007 Opt. Lett. 32 1914Google Scholar

    [15]

    QinY, GongQ, WangZ P 2014 Opt. Express 22 21790Google Scholar

    [16]

    Sun M J, Shi J H, Li H, Zeng G H 2013 Opt. Express 21 19395Google Scholar

    [17]

    Chen L F, Chang G J, He B Y, Mao H D, Zhao D M 2017 Opt. Laser Eng. 88 221Google Scholar

    [18]

    Xiang T, Wong K W, Liao X 2007 Chaos (Woodbury, N.Y.) 17 23115Google Scholar

    [19]

    Taneja N, Raman B, Gupta I 2011 Aeu Int. J. Electron. Commun. 65 338Google Scholar

    [20]

    Bhatnagar G, Wu Q M J 2012 Digit. Signal Process. 22 648Google Scholar

    [21]

    孔德照, 沈学举, 林超, 杨鹏, 潘宇 2013 光学仪器 35 17Google Scholar

    Kong D Z, Shen X J, Lin C, Yang P, Pan Y 2013 Opt. Instr. 35 17Google Scholar

    [22]

    肖宁, 李爱军 2017 应用光学 38 406

    Xiao N, Li A J 2017 J. Appl. Opt. 38 406

    [23]

    彭翔, 位恒政, 张鹏 2007 物理学报 56 3924Google Scholar

    Peng X, Wei Z H, Zhang P 2007 Acta Phys. Sin. 56 3924Google Scholar

    [24]

    史祎诗, 司徒国海, 张静娟 2008 光子学报 37 1779

    Shi Y S, Situ G H, Zhang J J 2008 Acta Photon. Sin. 37 1779

  • 图 1  提出的系统加密部分示意图(f是透镜1和透镜2的焦距)

    Fig. 1.  Schematic diagram of the proposed encryption system (f is the focal length of lens 1 and lens 2).

    图 2  加密系统的流程图

    Fig. 2.  Flow chart of the encryption system.

    图 3  解密系统的流程图

    Fig. 3.  Flow chart of decryption system.

    图 4  原始图像和加密图像的直方图

    Fig. 4.  Histogram of original and encrypted images.

    图 5  系统对相位函数${K_1}\left( {x, y} \right)$的密钥敏感性

    Fig. 5.  Key sensitivity of the system to the phase function ${K_1}\left( {x, y} \right)$.

    图 6  系统对相位函数${K_1}\left( {x, y} \right)$的相位信息的密钥敏感性与${\varphi _{{\rm{cut}}}}(x, y)$大小的关系

    Fig. 6.  Relationship between the key sensitivity of the system to the phase information of the phase function ${K_1}\left( {x, y} \right)$ and the size of ${\varphi _{{\rm{cut}}}}(x, y)$

    图 7  相位函数${K_2}\left( {x, y} \right)$错误时的解密图像 (a)${K_2}\left( {x, y} \right)$$K_2'(x, y)$正确, 其他相位信息错误; (b)${K_2}\left( {x, y} \right)$$K_2'(x, y)$错误, 其他相位信息正确; (c)${K_2}\left( {x, y} \right)$完全错误

    Fig. 7.  Decrypted image with wrong phase function ${K_2}\left( {x, y} \right)$: (a) $K_2'(x, y)$ is correct in ${K_2}\left( {x, y} \right)$, other phase information is wrong; (b) $K_2'(x, y)$ is wrong in ${K_2}\left( {x, y} \right)$, other phase information is correct; (c) ${K_2}\left( {x, y} \right)$completely wrong.

    图 8  图像剪切的尺寸不同对应的解密图像(剪切图像正确尺寸为150 × 150) (a) 50 × 50, CC = 0.2272; (b) 150 × 150, CC = 0.9934; (c) 250 × 250, CC = 0.0056

    Fig. 8.  Decrypted images for different cropped image sizes (the correct size of the cropped image is 150 × 150): (a) 50 × 50, CC = 0.2272; (b) 150 × 150, CC = 0.9934; (c) 250 × 250, CC = 0.0056.

    图 9  不同剪切图像尺寸对应的CC (正确尺寸为150 × 150)

    Fig. 9.  CC for different cropped image sizes (correct size is 150 × 150).

    图 10  图像剪切位置的偏差对解密图像的影响

    Fig. 10.  The effect of the deviation of the image cut position on the decrypted image.

    图 11  解密时衍射距离和波长对解密图像的影响, 正确的衍射距离为100 mm(两次衍射距离相同), 正确的波长为0.632 μm (a)衍射距离对解密图像的影响; (b)波长对解密图像的影响

    Fig. 11.  The effect of diffraction distance and wavelength on decrypted image during decryption: (a) The effect of diffraction distance on the decrypted image; (b) the effect of wavelength on decrypted image. The correct diffraction distance is 100 mm (the two diffraction distances are the same), and the correct wavelength is 0.632 μm.

    图 12  衍射攻击过程示意图

    Fig. 12.  Schematic diagram of diffraction attack process.

    图 13  衍射攻击得到的解密图像, CC = 0.2841

    Fig. 13.  Decrypted image obtained by diffraction attack, CC = 0.2841.

    图 14  不同的系统对高斯噪声的鲁棒性

    Fig. 14.  Different system robustness to Gaussian noise.

    图 15  加密图像被裁剪不同比例时不同系统得到的解密图像

    Fig. 15.  Decrypted images obtained by different systems when the encrypted image is cropped at different ratios.

    图 16  加密图像数据随机丢失的解密图像 (a)随机丢失10%; (b)随机丢失30%; (c)随机丢失10%

    Fig. 16.  Decrypted images where encrypted image data is randomly lost: (a) Randomly lost by 10%; (b) randomly lost by 30%; (c) randomly lost by 40%.

  • [1]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [2]

    Tajahuerce E, Javidi B 2001 Appl. Opt. 39 6595

    [3]

    Javidi B 2000 Opt. Eng. 39 2031Google Scholar

    [4]

    Wu C H, Chang J, Quan C G, Zhang Y J 2020 Opt. Commun. 462 125347Google Scholar

    [5]

    Yu H H, Chang J, Liu X, Wu C H, He Y F, Zhang Y J 2017 Opt. Express 25 8860Google Scholar

    [6]

    Sui L S, Gao B 2013 Opt. Laser Technol. 48 117Google Scholar

    [7]

    He W Q, Peng X, Meng X F 2012 J. Opt. 14 075401Google Scholar

    [8]

    Unnikrishnan G, Joseph J, Singh K 2000 Opt. Lett. 25 887Google Scholar

    [9]

    Situ G H, Zhang J J 2004 Opt. Lett. 29 1854

    [10]

    Unnikrishnan G 2000 Opt. Eng. 39 2853Google Scholar

    [11]

    彭翔, 汤红乔, 田劲东 2007 物理学报 56 2629Google Scholar

    Peng X, Tang H Q, Tian J D 2007 Acta Phys. Sin. 56 2629Google Scholar

    [12]

    Peng X, Zhang P, Wei H Z, Yu B 2006 Opt. Lett. 31 1044Google Scholar

    [13]

    Wu C H, Chang J, Xu X X, Zhang Y J 2019 Opt. Commun. 450 87Google Scholar

    [14]

    Shi Y S, Situ G H, Zhang J J 2007 Opt. Lett. 32 1914Google Scholar

    [15]

    QinY, GongQ, WangZ P 2014 Opt. Express 22 21790Google Scholar

    [16]

    Sun M J, Shi J H, Li H, Zeng G H 2013 Opt. Express 21 19395Google Scholar

    [17]

    Chen L F, Chang G J, He B Y, Mao H D, Zhao D M 2017 Opt. Laser Eng. 88 221Google Scholar

    [18]

    Xiang T, Wong K W, Liao X 2007 Chaos (Woodbury, N.Y.) 17 23115Google Scholar

    [19]

    Taneja N, Raman B, Gupta I 2011 Aeu Int. J. Electron. Commun. 65 338Google Scholar

    [20]

    Bhatnagar G, Wu Q M J 2012 Digit. Signal Process. 22 648Google Scholar

    [21]

    孔德照, 沈学举, 林超, 杨鹏, 潘宇 2013 光学仪器 35 17Google Scholar

    Kong D Z, Shen X J, Lin C, Yang P, Pan Y 2013 Opt. Instr. 35 17Google Scholar

    [22]

    肖宁, 李爱军 2017 应用光学 38 406

    Xiao N, Li A J 2017 J. Appl. Opt. 38 406

    [23]

    彭翔, 位恒政, 张鹏 2007 物理学报 56 3924Google Scholar

    Peng X, Wei Z H, Zhang P 2007 Acta Phys. Sin. 56 3924Google Scholar

    [24]

    史祎诗, 司徒国海, 张静娟 2008 光子学报 37 1779

    Shi Y S, Situ G H, Zhang J J 2008 Acta Photon. Sin. 37 1779

  • [1] 沈晓阳, 成一灏, 夏林. 紧凑型冷原子高分辨成像系统光学设计. 物理学报, 2024, 73(6): 066701. doi: 10.7498/aps.73.20231689
    [2] 黄一帆, 邢阳光, 沈文杰, 彭吉龙, 代树武, 王颖, 段紫雯, 闫雷, 刘越, 李林. 亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学设计. 物理学报, 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [3] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法. 物理学报, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [4] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展. 物理学报, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [5] 邱乙耕, 范元媛, 颜博霞, 王延伟, 吴一航, 韩哲, 亓岩, 鲁平. 光声光谱仪用三维扩展光源光场整形系统设计与实验. 物理学报, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [6] 徐昭, 周昕, 白星, 李聪, 陈洁, 倪洋. 基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法. 物理学报, 2021, 70(14): 144202. doi: 10.7498/aps.70.20202075
    [7] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [8] 胡耀华, 刘艳, 穆鸽, 秦齐, 谭中伟, 王目光, 延凤平. 基于多模光纤散斑的压缩感知在光学图像加密中的应用. 物理学报, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [9] 刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计. 物理学报, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [10] 冯帅, 常军, 牛亚军, 穆郁, 刘鑫. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法. 物理学报, 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [11] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕. 集成化导光板下表面微棱镜二维分布设计. 物理学报, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [12] 操超, 廖志远, 白瑜, 范真节, 廖胜. 基于矢量像差理论的离轴反射光学系统初始结构设计. 物理学报, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [13] 吕向博, 朱菁, 杨宝喜, 黄惠杰. 基于ybar-y图的光学结构计算方法研究. 物理学报, 2015, 64(11): 114201. doi: 10.7498/aps.64.114201
    [14] 沈本兰, 常军, 王希, 牛亚军, 冯树龙. 三反射主动变焦系统设计. 物理学报, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [15] 裴琳琳, 吕群波, 王建威, 刘扬阳. 编码孔径成像光谱仪光学系统设计. 物理学报, 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [16] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [17] 彭 翔, 汤红乔, 田劲东. 双随机相位编码光学加密系统的唯密文攻击. 物理学报, 2007, 56(5): 2629-2636. doi: 10.7498/aps.56.2629
    [18] 王 方, 朱启华, 蒋东镔, 张清泉, 邓 武, 景 峰. 多程放大系统主放大级光学优化设计. 物理学报, 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
    [19] 董科研, 孙 强, 李永大, 张云翠, 王 健, 葛振杰, 孙金霞, 刘建卓. 折射/衍射混合红外双焦光学系统设计. 物理学报, 2006, 55(9): 4602-4607. doi: 10.7498/aps.55.4602
    [20] 孙 强, 于 斌, 王肇圻, 母国光, 卢振武. 谐衍射双波段红外超光谱探测系统研究. 物理学报, 2004, 53(3): 756-761. doi: 10.7498/aps.53.756
计量
  • 文章访问数:  5796
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-01
  • 修回日期:  2020-05-25
  • 上网日期:  2020-10-10
  • 刊出日期:  2020-10-20

/

返回文章
返回