搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法

徐昭 周昕 白星 李聪 陈洁 倪洋

引用本文:
Citation:

基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法

徐昭, 周昕, 白星, 李聪, 陈洁, 倪洋

Attacking asymmetric cryptosystem based on phase truncated Fourier fransform by deep learning

Xu Zhao, Zhou Xin, Bai Xing, Li Cong, Chen Jie, Ni Yang
PDF
HTML
导出引用
  • 大多数光学加密系统都是对称加密系统, 在光学图像加密中明文和密文之间具有线性关系, 其系统的安全性有待加强. 而基于相位截断傅里叶变换(phase-truncated Fourier transform, PTFT)的非对称加密系统, 其非线性的相位截断操作使加密系统的安全性得到了极大提升. 本文提出使用深度学习方法攻击PTFT加密系统, 通过PTFT加密系统构造出明密文对图像数据集, 然后将其输入残差网络(residual network, ResNet)中进行训练, ResNet自动学习该加密系统的解密特性. 最后应用测试集对训练好的模型进行解密性能测试, 数据表明该模型能够较好地恢复图像并且该模型具有一定的抗噪声能力. 与两步迭代振幅恢复算法相比, 本文所提出方法恢复的图像质量更好.
    Most of optical encryption systems are symmetric cryptosystems. The plaintext and the ciphertext in optical image encryption are related linearly. The security of the system needs to be strengthened. The asymmetric cryptosystem based on phase truncated Fourier transforms (PTFT) makes the security of the encryption system greatly improved by its nonlinear phase truncation. Deep learning (DL) as a method of machine learning was proposed decades ago. With the development of computer’s performance, the practicality of deep learning proves to be more and more obvious. Recently, deep learning has been effectively used in many fields such as biomedicine, object detection, etc. The good results have been achieved. In this article proposed is the attack to the PTFT encryption system by deep learning. Through the PTFT encryption system, we construct a plaintext-ciphertext paired image dataset and then train it by residual network (ResNet). There are two problems encountered by the traditional neural network model. One is vanishing or named exploding gradient, which makes training effect difficult to converge and the other is a degradation phenomenon. When continuing to increase the number of layers for a suitable depth model, the model accuracy will decline which is not caused by overfitting. This problem can be solved by the ResNet to a certain extent by directly bypassing and then taking the input information to the output to protect the integrity of the information. The biggest difference between ordinary directly connected convolutional neural networks and ResNet is that the ResNet has many bypass branches that directly connect the input to the subsequent layers, so that the subsequent layers can directly learn the residuals. The ResNet can automatically learn the decryption characteristics of the encryption system. Finally, the test set is used to test the decryption performance of the trained model. The data show that the model can restore the image with high quality and the model has a certain anti-noise ability. Compared with the two-step iterative amplitude recovery algorithm, the the method proposed in this paper can recover high quality image.
      通信作者: 周昕, zhoxn@21cn.com
    • 基金项目: 国家自然科学基金(批准号: 61475104, 61177009)资助的课题
      Corresponding author: Zhou Xin, zhoxn@21cn.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475104, 61177009)
    [1]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [2]

    Qin W, Peng X 2010 Opt. Lett. 35 118Google Scholar

    [3]

    Lecun Y, Bottou L, Bengio Y, Haffner P 1998 Proc. IEEE. 86 2278Google Scholar

    [4]

    Krizhevsky A, Sutskever I, Hinton G 2017 Commun. ACM. 60 84Google Scholar

    [5]

    Simonyan K, Zisserman A 2014 arXiv e-prints arXiv: 1409.1556

    [6]

    Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A 2015 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Boston, USA, June 7−12, 2015 p1

    [7]

    He K, Zhang X, Ren S, Sun J 2015 arXiv e-prints arXiv: 1512.03385

    [8]

    Hai H, Pan S, Liao M, Lu D, He W, Peng X 2019 Opt. Express 27 21204Google Scholar

    [9]

    Srivastava R, Greff K, Schmidhuber J 2015 Proceedings of the 28th International Conference on Neural Information Processing Systems Montreal, Canada, December 7−10, 2015 p2377

    [10]

    Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C 2016 arXiv e-prints arXiv: 1608.04117

    [11]

    Glorot X, Bordes A, Bengio Y 2011 Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS) Fort Lauderdale, USA, April 11−13, 2011 p315

    [12]

    Nair V, Hinton G 2010 Proceedings of the 27th International Conference on International Conference on Machine Learning Madison, USA, June 21−24, 2010 p807

    [13]

    Ioffe S, Szegedy C 2015 Proceedings of the 32nd International Conference on International Conference on Machine Learning Lille, France, July 6−11, 2015 p448

    [14]

    Dong C, Loy C C, He K, Tang X 2014 Proceedings of the 13th European Conference on Computer Vision Zurich, Switzerland, September 6−12, 2014 p184

    [15]

    Ishikawa M 1996 Neural Networks. 9 509Google Scholar

    [16]

    Ciregan D, Meier U, Schmidhuber J 2012 2012 IEEE Conference on Computer Vision and Pattern Recognition Providence, USA, June 16−21, 2012 p3642

    [17]

    Kingma D P, Ba J 2014 arXiv e-prints arXiv: 1412.6980

    [18]

    Horé A, Ziou D 2010 20th International Conference on Pattern Recognition Istanbul, Turkey, Auguest 23−26, 2010 p2366

    [19]

    Wang Z, Bovik A C, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process. 13 600Google Scholar

    [20]

    Wang X, Zhao D 2012 Opt. Commun. 285 1078Google Scholar

  • 图 1  基于PTFT的加密系统原理图 (a) 加密过程; (b) 解密过程

    Fig. 1.  Schematic diagrams of PTFT system: (a) Encryption; (b) decryption.

    图 2  残差网络模块

    Fig. 2.  Residual module of ResNet.

    图 3  基于ResNet的网络架构

    Fig. 3.  Neural network based on ResNet.

    图 4  神经网络重建效果图 (a) 明文图像; (b) 密文图像; (c) 通过神经网络恢复的明文图像

    Fig. 4.  Images reconstructed by neural network: (a) Plaintext; (b) ciphertext; (c) plaintext reconstructed by neural network.

    图 5  含有不同能量比高斯噪声的密文解密效果 (a) 0%; (b) 10%; (c) 20%; (d) 50%

    Fig. 5.  Reconstruction results of ciphertext containing Gaussian noise with different energy ratios: (a) 0%; (b) 10%; (c) 20%; (d) 50%.

    图 6  使用含不同能量比高斯噪声的密文训练集后的测试效果 (a) 0%; (b) 20%

    Fig. 6.  Test results after using ciphertext groups of Gaussian noise with different energy ratios: (a) 0%; (b) 20%.

    图 7  使用含不同能量比高斯噪声的密文训练集后的测试效果 (a) 0%; (b) 20%

    Fig. 7.  Test results after using ciphertext groups of Gaussian noise with different energy ratios: (a) 0%; (b) 20%.

    图 8  图6中图像的PSNR和SSIM (a) PSNR; (b) SSIM

    Fig. 8.  PSNR and SSIM in Fig.6: (a) PSNR; (b) SSIM.

    图 9  (a)深度学习算法恢复结果; (b)两步迭代振幅恢复算法恢复结果

    Fig. 9.  (a) Reconstruction results by deep learning; (b) reconstruction results by two-step iterative amplitude retrieval approach.

    图 10  图9中图像的PSNR和SSIM (a) PSNR; (b) SSIM

    Fig. 10.  PSNR and SSIM in Fig. 9: (a) PSNR; (b) SSIM.

  • [1]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [2]

    Qin W, Peng X 2010 Opt. Lett. 35 118Google Scholar

    [3]

    Lecun Y, Bottou L, Bengio Y, Haffner P 1998 Proc. IEEE. 86 2278Google Scholar

    [4]

    Krizhevsky A, Sutskever I, Hinton G 2017 Commun. ACM. 60 84Google Scholar

    [5]

    Simonyan K, Zisserman A 2014 arXiv e-prints arXiv: 1409.1556

    [6]

    Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A 2015 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Boston, USA, June 7−12, 2015 p1

    [7]

    He K, Zhang X, Ren S, Sun J 2015 arXiv e-prints arXiv: 1512.03385

    [8]

    Hai H, Pan S, Liao M, Lu D, He W, Peng X 2019 Opt. Express 27 21204Google Scholar

    [9]

    Srivastava R, Greff K, Schmidhuber J 2015 Proceedings of the 28th International Conference on Neural Information Processing Systems Montreal, Canada, December 7−10, 2015 p2377

    [10]

    Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C 2016 arXiv e-prints arXiv: 1608.04117

    [11]

    Glorot X, Bordes A, Bengio Y 2011 Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS) Fort Lauderdale, USA, April 11−13, 2011 p315

    [12]

    Nair V, Hinton G 2010 Proceedings of the 27th International Conference on International Conference on Machine Learning Madison, USA, June 21−24, 2010 p807

    [13]

    Ioffe S, Szegedy C 2015 Proceedings of the 32nd International Conference on International Conference on Machine Learning Lille, France, July 6−11, 2015 p448

    [14]

    Dong C, Loy C C, He K, Tang X 2014 Proceedings of the 13th European Conference on Computer Vision Zurich, Switzerland, September 6−12, 2014 p184

    [15]

    Ishikawa M 1996 Neural Networks. 9 509Google Scholar

    [16]

    Ciregan D, Meier U, Schmidhuber J 2012 2012 IEEE Conference on Computer Vision and Pattern Recognition Providence, USA, June 16−21, 2012 p3642

    [17]

    Kingma D P, Ba J 2014 arXiv e-prints arXiv: 1412.6980

    [18]

    Horé A, Ziou D 2010 20th International Conference on Pattern Recognition Istanbul, Turkey, Auguest 23−26, 2010 p2366

    [19]

    Wang Z, Bovik A C, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process. 13 600Google Scholar

    [20]

    Wang X, Zhao D 2012 Opt. Commun. 285 1078Google Scholar

  • [1] 张赞, 黄北举, 陈弘达. 基于可重构硅光滤波器的计算重建片上光谱仪. 物理学报, 2024, 73(14): 140701. doi: 10.7498/aps.73.20240224
    [2] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统. 物理学报, 2024, 73(10): 104207. doi: 10.7498/aps.73.20240171
    [3] 施岳, 欧攀, 郑明, 邰含旭, 王玉红, 段若楠, 吴坚. 基于轻量残差复合增强收敛神经网络的粒子场计算层析成像伪影噪声抑制. 物理学报, 2024, 73(10): 104202. doi: 10.7498/aps.73.20231902
    [4] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [5] 刘栋, 崔新月, 王浩东, 张贵军. 蛋白质结构模型质量评估方法综述. 物理学报, 2023, 72(24): 248702. doi: 10.7498/aps.72.20231071
    [6] 欧秀娟, 肖奕. RNA扭转角预测的深度学习方法. 物理学报, 2023, 72(24): 248703. doi: 10.7498/aps.72.20231069
    [7] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测. 物理学报, 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [8] 张航瑛, 王雪琦, 王华英, 曹良才. 基于明度分量的Retinex-Net图像增强改进方法. 物理学报, 2022, 71(11): 110701. doi: 10.7498/aps.71.20220099
    [9] 战庆亮, 葛耀君, 白春锦. 基于深度学习的流场时程特征提取模型. 物理学报, 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [10] 朱琦, 许多, 张元军, 李玉娟, 王文, 张海燕. 基于卷积神经网络的白蚀缺陷超声探测. 物理学报, 2022, 71(24): 244301. doi: 10.7498/aps.71.20221504
    [11] 南虎, 麻晓晶, 赵海博, 汤少杰, 刘卫华, 王大威, 贾春林. 基于YOLOv3框架的高分辨电镜图像原子峰位置检测. 物理学报, 2021, 70(7): 076803. doi: 10.7498/aps.70.20201502
    [12] 苏博, 陶芬, 李可, 杜国浩, 张玲, 李中亮, 邓彪, 谢红兰, 肖体乔. 同步辐射纳米CT图像配准方法研究. 物理学报, 2021, 70(16): 160704. doi: 10.7498/aps.70.20210156
    [13] 王甜甜, 王慧, 朱艳春, 王丽嘉. 基于位移流U-Net和变分自动编码器的心脏电影磁共振图像左心肌运动追踪. 物理学报, 2021, 70(22): 228701. doi: 10.7498/aps.70.20210885
    [14] 赵智鹏, 周双, 王兴元. 基于深度学习的新混沌信号及其在图像加密中的应用. 物理学报, 2021, 70(23): 230502. doi: 10.7498/aps.70.20210561
    [15] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测. 物理学报, 2021, 70(16): 168702. doi: 10.7498/aps.70.20210403
    [16] 郑天韵, 王圣业, 王光学, 邓小刚. 基于深度残差网络的高精度自然转捩模拟方法. 物理学报, 2020, 69(20): 204701. doi: 10.7498/aps.69.20200563
    [17] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [18] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统. 物理学报, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [19] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪. 基于深度学习的联合变换相关器光学图像加密系统去噪方法. 物理学报, 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [20] 盖 琦, 王明伟, 李智磊, 翟宏琛. 基于离散四元数傅里叶变换的双随机相位加密技术. 物理学报, 2008, 57(11): 6955-6961. doi: 10.7498/aps.57.6955
计量
  • 文章访问数:  5473
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-08
  • 修回日期:  2021-02-24
  • 上网日期:  2021-07-12
  • 刊出日期:  2021-07-20

/

返回文章
返回