-
电介质激光加速器作为一种微型加速器,其结构设计直接影响加速粒子束的能量增益和束流品质。多数设计基于波长约1 μm的近红外激光驱动光源。采用10倍波长的长波红外激光作为驱动光源,有望在保持加速梯度的前提下获得更高束流品质。受长距离加速限制,相关波段下的结构设计仍较为缺失。为此,本研究提出一种基于深度学习技术的长波红外介电光栅加速器结构设计方法,建立包含几何参数、材料性质、光场能量等多个参数的综合评估方法,通过精准预测粒子能量增幅,综合提取最优粒子能量增幅对应的结构参数以实现结构设计。结果表明,本研究所设计的光栅加速器粒子能量增幅高达99.5 keV,同比增长19.9%,可实现100%的传输效率,束斑半径14.5 μm,加速的平均粒子束电流为20.4 fA,对比近红外光栅结构高出了6.9倍,且粒子束亮度与近红外光栅结构相当。本研究为长波红外高净增益介电光栅加速器的设计提供了潜在的技术路线。同时本研究为复杂光电器件结构设计提供了一个新的思路。Dielectric laser accelerators (DLAs), as compact particle accelerators, rely critically on their structural design to determine both the energy gain and beam quality of accelerated bunches. While most existing DLAs are driven by near-infrared lasers at ~1 μm wavelength, employing long-wave infrared (LWIR) lasers at ten times that wavelength offers the potential for superior beam quality without sacrificing acceleration gradient. To address the lack of optimized structural designs in the LWIR band where long-distance acceleration poses unique challenges—we introduce a deep learning–based design methodology for LWIR dielectric grating accelerator structures. Our approach integrates geometric parameters, material properties, and optical-field energy metrics into a unified evaluation framework and uses a surrogate model to predict particle energy gain with high precision. Optimal structural parameters are then extracted to realize the final design. Simulation results show an energy gain of 99.5 keV (a 19.9% year-over-year improvement), 100% transmission efficiency, a beam spot radius of 14.5 μm, and an average beam current of 20.4 fA—6.9 fold higher than comparable near-infrared gratings—while maintaining equivalent beam brightness. This work provides a viable technical route for high-net-gain LWIR dielectric grating accelerators and offers a novel framework for the structural optimization of complex optoelectronic devices.
-
[1] Zhang Y, Fang W C, Huang X X, Tan J H, Wang C P, Zhao Z T 2021 Nucl. Sci. Tech. 32 38
[2] Tantawi S G, Dolgashev V, Higashi Y, Dolgashev V A, Cary J R, Kemp M A 2010 AIP Conf. Proc. 1299 29
[3] Higo T, Higashi Y, Matsumoto S, Yokoyama K, Doebert S, Grudiev A, Riddone G, Wuensch W, Zennaro R, Adolphsen C, Dolgashev V, Jensen A, Laurent L, Tantawi S G, Wang F, Wang J W 2010 Proc. 14th Adv. Accel. Concepts Wksp.
[4] Mizuno K, Ono S, Shimoe O 1975 Nature 253 184
[5] Soong K, Byer R L, Colby E R, England R J, Peralta E A 2012 AIP Conf. Proc. 1507 516
[6] Agustsson R, Arab E, Murokh A, O'Shea B, Ovodenko A, Pogorelsky I, Rosenzweig J, Solovyov V, Tilton R 2015 Opt. Mater. Express 5 2835
[7] Cesar D, Maxson J, Musumeci P, Shen X, England R J, Wootton K P 2018 Nucl. Instrum. Methods A 909 252
[8] Plettner T, Byer R L, Montazeri B 2011 J. Mod. Opt. 58 1518
[9] Hughes T, Veronis G, Wootton K P, England R J, Fan S 2017 Opt. Express 25 15414
[10] Tompkins H G, Tigner E L S 1993 Refractive index of optical materials in the infrared (Academic Press)
[11] Plettner T, Lu P P, Byer R L 2006 Phys. Rev. ST Accel. Beams 9 111301
[12] Peralta E A, Soong K, England R J, Colby E R, Wu Z, Montazeri B, McGuinness C, McNeur J, Leedle K J, Walz D, Sozer E B, Cowan B, Schwartz B, Travish G, Byer R L 2013 Nature 503 91
[13] Cesar D, Custodio S, Maxson J, Musumeci P, Shen X, Threlkeld E, England R J, Hanuka A, Makasyuk I V, Peralta E A, Wootton K P, Wu Z 2018 Commun. Phys. 1 46
[14] Lin X E 2001 Phys. Rev. ST Accel. Beams 4 051301
[15] Cowan B M 2008 Phys. Rev. ST Accel. Beams 11 011301
[16] Mei X, Zha R, Pan Y, Wang S, Sun B, Lei C, Ke C, Zhao Z, Wang D 2023 Ultrafast Sci. 3 0050
[17] Plettner T, Byer R L, Montazeri B 2011 J. Mod. Opt. 58 1518
[18] Plettner T, Byer R L, McGuinness C, Hommelhoff P 2009 Phys. Rev. ST Accel. Beams 12 101302
[19] Plettner T, Byer R L 2008 Phys. Rev. ST Accel. Beams 11 030704
[20] Siemann R H 2004 Phys. Rev. ST Accel. Beams 7 061303
[21] Breuer J, Graf R, Apolonski A, Hommelhoff P 2014 Phys. Rev. ST Accel. Beams 17 021301
[22] Breuer J, Hommelhoff P 2014 Nucl. Instrum. Methods Phys. Res. A.740 114
[23] Breuer J, McNeur J, Hommelhoff P 2014 J. Phys. B At. Mol. Opt. Phys. 47 234004
[24] Black D S, Zhao Z X, Leedle K J, Miao Y, Byer R L, Fan S, Solgaard O 2020 Phys. Rev. Accel. Beams. 23 114001
[25] He Y F, Sun B, Ma M J, Li W, He Q Y, Cui Z H, Wang S Y, Zhao Z Q 2022 Nucl. Sci. Tech. 33 120
[26] Ma W, Xu Y, Xiong B, Deng L, Peng R W, Wang M, Liu Y 2022 Adv. Mater. 34 2110022
[27] Liu X, Wang P, Xiao C, Fu L, Xu J, Zhang D, Zhou H, Fan T 2023 Adv. Funct. Mater. 33 2212068
[28] Zhang Q, Liu C, Wan X, Zhang L, Liu S, Yang Y, Cui T 2019 Adv. Theory Simul. 2 1800132
[29] Wang C, Cheng X, Wang R, Hu X, Wang C 2024 Laser Photonics Rev. 18 2300958
[30] Lei Z, Xu Y, Zhao Y, Wang D 2024 Photon. Res. 12 123
[31] Polyanskiy M N, Babzien M, Pogorelsky I V 2015 Optica 2 675
[32] Pogorelsky I V, Babzien M, Ben-Zvi I, Skaritka J, Polyanskiy M N 2016 Nucl. Instrum. Methods Phys. Res. A 829 432
计量
- 文章访问数: 7
- PDF下载量: 0
- 被引次数: 0