搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光栅结构的远场时间反演亚波长源成像

龚志双 王秉中 王任 臧锐 王晓华

引用本文:
Citation:

基于光栅结构的远场时间反演亚波长源成像

龚志双, 王秉中, 王任, 臧锐, 王晓华

Far-field time reversal subwavelength imaging of sources based on grating structure

Gong Zhi-Shuang, Wang Bing-Zhong, Wang Ren, Zang Rui, Wang Xiao-Hua
PDF
导出引用
  • 针对远场微波成像所存在的瑞利极限,分析了实现亚波长成像的关键因素;继而通过设计光栅结构将近场的凋落波转化为传输波,实现了将凋落信息传输到远场区域;之后结合所设计的辅助光栅结构,构建了一套基于时间反演技术的远场成像系统.仿真和实验结果表明,所设计的辅助结构能将凋落波转为传输波,并且所构建的成像系统能够分辨出两个相距小于半波长的源目标.整个系统的设计为远场微波超分辨率成像提供了一种新的思路.
    For far-field imaging applications, the imaging resolution of conventional lenses is limited by the diffraction limit because of the exponential decay of high spatial frequency waves. The key to realizing the subwavelength imaging lies in the collection of evanescent informations in far-field region. However, the collection of evanescent waves is not the only thing we need to do. The relation between target position and far-field information is also very important. In this paper, a far-field time reversal subwavelength imaging system is constructed with the help of an evanescent-to-propagating conversion plate, i. e., a grating plate. The designed grating plate is able to convert evanescent waves into propagating waves through the modulation in space-spectrum domain. In order to clearly understand the conversion, a focusing experiment is conducted with two sources and five time reversal mirror antennas. By recording the amplitudes of the time reversal signals in the two source positions, we can see that the amplitude of the refocusing signal at the original source position is much larger than that of the other signal. Through numerical simulation and experiment, the conversion of evanescent wave into propagative wave is proved finally. Then, according to the self-conjugation property of time reversal, the result of self-conjugation for channel response in complex environment is nearly the same as an impulse function. The image of source target can be reconstructed without exact prior knowledge of the expression of the spatial channel response. In order to exemplify the super resolution property of our designed system, experiments with simulation data and experimental data are executed with and without our designed grating plate, respectively. For imaging applications, we first record the forward signals received by the time reversal mirror antennas, and then record the refocusing field distribution on the imaging plane to obtain the image of the target. In the reconstruction process, another thing we need to notice is that the original sources should be removed. This is because in a real imaging application, we cannot know the exact position of target inadvance. The imaging results show that the resolution of our imaging system has overcome the diffraction limit. Compared with the imaging resolution of the imaging system without the grating plate, the imaging resolution of the system with our designed grating plate is improved obviously. Since this kind of method overcomes the intrinsical diffraction limit by transmitting evanescent information to far-field region in a way of converting them into propagative waves. This kind of method offers us a promising alternative to microwave far-field subwavelength imaging applications.
      通信作者: 王秉中, bzwang@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61331007,61301271,61571085,61361166008)资助的课题.
      Corresponding author: Wang Bing-Zhong, bzwang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61331007,61301271,61571085,61361166008).
    [1]

    Abbe E 1873 Arch. Mikroskop. Anat. 9 413

    [2]

    Zhang X, Liu Z W 2008 Nat. Mater. 7 435

    [3]

    Wang R, Wang B Z, Gong Z S, Ding X 2015 Sci. Reports 5 11131

    [4]

    Jouvaud C, Ourir A, Rosny J 2014 Appl. Phys. Lett. 104 243507

    [5]

    Gao Q, Wang B Z, Wang X H 2015 IEEE Trans. Antenna Propag. 63 5586

    [6]

    Ourir A, Fink M 2014 Phys. Rev. B 89 115403

    [7]

    Durant S, Liu Z, Steele J, Zhang X 2006 J. Opt. Soc. Am. B 23 2383

    [8]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [9]

    Lerosey G, Rosny J, Tourin A, Derode A, Montaldo G, Fink M 2004 Phys. Rev. Lett. 92 193904

    [10]

    Zhou H C, Wang B Z, Ding S, Ou H Y 2013 Acta Phys. Sin. 62 114101 (in Chinese)[周洪澄, 王秉中, 丁帅, 欧海燕 2013 物理学报 62 114101]

    [11]

    Chen Y M, Wang B Z, Ge G D 2012 Acta Phys. Sin. 61 024101 (in Chinese)[陈英明, 王秉中, 葛广顶 2012 物理学报 61 024101]

    [12]

    Chen Y M, Wang B Z 2012 Chin. Phys. B 21 026401

    [13]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847

    [14]

    Smith S W 1997 The Scientist and Engineer's Guide to Digital Signal Processing (Second Edition) (California:California Technical Publishing) p132

  • [1]

    Abbe E 1873 Arch. Mikroskop. Anat. 9 413

    [2]

    Zhang X, Liu Z W 2008 Nat. Mater. 7 435

    [3]

    Wang R, Wang B Z, Gong Z S, Ding X 2015 Sci. Reports 5 11131

    [4]

    Jouvaud C, Ourir A, Rosny J 2014 Appl. Phys. Lett. 104 243507

    [5]

    Gao Q, Wang B Z, Wang X H 2015 IEEE Trans. Antenna Propag. 63 5586

    [6]

    Ourir A, Fink M 2014 Phys. Rev. B 89 115403

    [7]

    Durant S, Liu Z, Steele J, Zhang X 2006 J. Opt. Soc. Am. B 23 2383

    [8]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [9]

    Lerosey G, Rosny J, Tourin A, Derode A, Montaldo G, Fink M 2004 Phys. Rev. Lett. 92 193904

    [10]

    Zhou H C, Wang B Z, Ding S, Ou H Y 2013 Acta Phys. Sin. 62 114101 (in Chinese)[周洪澄, 王秉中, 丁帅, 欧海燕 2013 物理学报 62 114101]

    [11]

    Chen Y M, Wang B Z, Ge G D 2012 Acta Phys. Sin. 61 024101 (in Chinese)[陈英明, 王秉中, 葛广顶 2012 物理学报 61 024101]

    [12]

    Chen Y M, Wang B Z 2012 Chin. Phys. B 21 026401

    [13]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847

    [14]

    Smith S W 1997 The Scientist and Engineer's Guide to Digital Signal Processing (Second Edition) (California:California Technical Publishing) p132

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像:散射光场偏振特性的复用技术. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240268
    [2] 安腾远, 丁霄. 基于角谱域和时间反演的任意均匀场的生成方法. 物理学报, 2023, 72(18): 180201. doi: 10.7498/aps.72.20230418
    [3] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究. 物理学报, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [4] 郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮. 超分辨率超快超声脊髓微血管成像方法. 物理学报, 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [5] 陈传升, 王秉中, 王任. 基于时间反演技术的电磁器件端口场与内部场转换方法. 物理学报, 2021, 70(7): 070201. doi: 10.7498/aps.70.20201682
    [6] 高强, 李小秋, 周志鹏, 孙磊. 基于分形谐振器的远场超分辨率扫描成像. 物理学报, 2019, 68(24): 244102. doi: 10.7498/aps.68.20190620
    [7] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像. 物理学报, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [8] 何林阳, 刘晶红, 李刚. 基于多相组重建的航空图像超分辨率算法. 物理学报, 2015, 64(11): 114208. doi: 10.7498/aps.64.114208
    [9] 杨丹青, 王莉, 王新龙. 基于周期结构负反射的远场增强成像研究. 物理学报, 2015, 64(5): 054301. doi: 10.7498/aps.64.054301
    [10] 邓承志, 田伟, 陈盼, 汪胜前, 朱华生, 胡赛凤. 基于局部约束群稀疏的红外图像超分辨率重建. 物理学报, 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [11] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法. 物理学报, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [12] 周洪澄, 王秉中, 丁帅, 欧海燕. 时间反演电磁波在金属丝阵列媒质中的超分辨率聚焦. 物理学报, 2013, 62(11): 114101. doi: 10.7498/aps.62.114101
    [13] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐. 基于远场时间反演的亚波长天线阵列研究. 物理学报, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [14] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演. 物理学报, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [15] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理. 物理学报, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [16] 葛广顶, 王秉中, 黄海燕, 郑罡. 时间反演电磁波超分辨率特性. 物理学报, 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [17] 丁 莉, 刘代中, 高妍琦, 朱宝强, 朱 俭, 彭增云, 朱健强, 俞立钧. 高功率激光装置光束准直系统新型远场监测技术. 物理学报, 2008, 57(9): 5713-5717. doi: 10.7498/aps.57.5713
    [18] 左言磊, 魏晓峰, 朱启华, 刘红婕, 王 逍, 黄 征, 郭 仪, 应纯同. 基于配对误差补偿方法的拼接光栅压缩池理论研究. 物理学报, 2007, 56(9): 5227-5232. doi: 10.7498/aps.56.5227
    [19] 左言磊, 魏晓峰, 朱启华, 王 逍, 刘红婕, 黄 征, 郭 仪, 应纯同. 单程拼接光栅压缩池系统中光栅缝隙的衍射效应. 物理学报, 2007, 56(10): 5784-5789. doi: 10.7498/aps.56.5784
    [20] 张海涛, 巩马理, 赵达尊, 闫平, 崔瑞祯, 贾维溥. 实现超分辨率的微变焦法. 物理学报, 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
计量
  • 文章访问数:  5309
  • PDF下载量:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-15
  • 修回日期:  2016-11-19
  • 刊出日期:  2017-02-05

/

返回文章
返回