搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生成对抗网络加速超分辨率超声定位显微成像方法研究

隋怡晖 郭星奕 郁钧瑾 Alexander A. Solovev 他得安 许凯亮

引用本文:
Citation:

生成对抗网络加速超分辨率超声定位显微成像方法研究

隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮

Accelerating super-resolution ultrasound localization microscopy using generative adversarial net

Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang
PDF
HTML
导出引用
  • 超快超声定位显微成像(uULM), 突破了传统超声衍射极限, 可实现分辨率远小于发射波长的在体深层微血管精准成像. 通过对微血管中数以万计的运动微泡进行中心点定位和轨迹追踪, uULM技术可重建微血管图像. 通常一张uULM图像需要数十秒甚至数百秒的连续长程图像采集, 这在一定程度上限制了其更广泛的临床应用. 针对这一挑战, 本研究在阐明了超声衍射极限、超分辨率定位理论方法的基础上, 给出了基于傅里叶环相关的分辨率测定原理和实现方法, 并结合传统uULM重建技术, 发展了一种基于生成对抗网络的深度学习超分辨超声成像方法, 以缩减uULM对图像采集时长的依赖, 提高成像速度和成像分辨率. 针对大鼠脑的在体数据分析结果表明, 基于生成对抗网络的超声定位显微技术微血管分辨达到10 μm, 在保持较高超声成像空间分辨率和图像饱和度的同时, 数据采集时间缩减一半, 从而显著降低了uULM对图像数据采集时长的依赖. 相关深度学习模型连接轨迹的计算复杂度较小, 且避免了人工调参以及轨迹筛选, 为加速超分辨率uULM微血流成像和提升uULM成像分辨率提供了一种有效的工具. 相关思路与方法对促进超分辨率uULM成像技术发展具有一定的借鉴意义.
    Ultrafast ultrasound localization microscopy (uULM) has broken through the fundamental acoustic diffraction limit by accumulating thousands of sub-wavelength microbubble localisation points and improved the spatial resolution by more than one order of magnitude, which is conducive to clinical diagnosis. By localizing individually injected microbubbles and tracking their movement with a subwavelength resolution, the vasculature microscopy can be achieved with micrometer scale. However, the reconstruction of a uULM image often requires tens or even hundreds of seconds of continuous long-range image acquisition, which limits its clinical application. In order to solve this problem, a generative adversarial network (GAN) based deep learning method is proposed to reconstruct the super-resolution ultrasound localization microscopy. In vivo uULM ultrasound datasets are used to train the network to reconstruct dense vascular networks via localized microbubbles. This approach is validated by using another in-vivo dataset obtained in a rat brain. Results show that GAN based ultrafast ultrasound localization microscopy (GAN-uULM) can resolve micro vessels smaller than 10 μm. Besides, GAN-uULM is able to distinguish small vessels that cannot be continuously reconstructed by using a standard uULM reconstruction method. Saturation parameter based on counting the number of explored pixels is used to evaluate the reconstruction quality. The proposed reconstruction approach reduces the data requirement by half and thus significantly accelerates the uULM imaging. It is illustrasted that for a dataset of 292 s ultrafast acquisition, the saturation of standard uULM image is 33%, while that of GAN-uULM can reach 46%. Fourier ring correlation (FRC) method is utilized to measure the spatial resolution in uULM. Resolutions of the images obtained by standard uULM and GAN-ULM are 7.8 μm and 8.9 μm, respectively.In conclusion, the developed deep learning model is able to connect trajectories with less computational complexity and avoids manual tuning and trajectory screening, providing an effective solution for accelerating ultrasound localization microscopy.
      通信作者: 许凯亮, xukl@fudan.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974081, 51961145108)和上海市青年科技启明星计划(批准号: 20QC1400200)资助的课题.
      Corresponding author: Xu Kai-Liang, xukl@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974081, 51961145108), and the Shanghai Rising Star Program, China (Grant No. 20QC1400200).
    [1]

    钟传钰, 郑元义 2021 中国医学影像技术 37 1799Google Scholar

    Zhong C Y, Zheng Y Y 2021 Chin. J. Med. Imaging Technol. 37 1799Google Scholar

    [2]

    王宇森, 陶鸿根 1991 中华内分泌代谢杂志 7 2

    Wang Y S, Tao H G 1991 Chin. J. Endocrinol. Metab. 7 2

    [3]

    Chugh B P, Lerch J P, Yu L X, Pienkowski M, Harrison R V, Henkelman R M, Sled J G 2009 Neuroimage 47 1312Google Scholar

    [4]

    Huang C H, Chen C C V, Siow T Y, Hsu S H S, Hsu Y H, Jaw F S, Chang C 2013 PLoS One 8 e78186Google Scholar

    [5]

    Hong G, Lee J C, Robinson J T, Raaz U, Xie L M, Huang, N F, Cooke J P, Dai H J 2012 Nat. Med. 18 1841Google Scholar

    [6]

    Yao J, Wang L, Yang J M, Maslov K I, Wong T T W, Li L, Huang C H, Zou J, Wang L V 2015 Nat. Methods 12 407Google Scholar

    [7]

    O"Reilly M A, Hynynen K 2013 Med. Phys. 40 110701Google Scholar

    [8]

    Jiang C, Li Y, Xu K, Ta D 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 72Google Scholar

    [9]

    臧佳琦, 许凯亮, 韩清见, 陆起涌, 梅永丰, 他得安 2021 物理学报 70 114304Google Scholar

    Zang J Q, Xu K L, Han Q J, Lu Q Y, Mei Y F, Ta D A 2021 Acta Phys. Sin. 70 114304Google Scholar

    [10]

    Sui Y H, Yan S Y, Zang J Q, Liu X, Ta D A, Wang W Q, Xu K L 2021 IEEE International Ultrasonics Symposium (IUS)

    [11]

    Sui Y H, Yan S Y, Yu J J, Song J P, Ta D A, Wang W Q, Xu K L 2022 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69 2425Google Scholar

    [12]

    Couture O, Bannouf S, Montaldo G, Aubry J F, Fink M 2009 Ultrasound Med. Biol. 35 1908Google Scholar

    [13]

    Viessmann O M, Eckersley R J, Christensen-Jeffries K, Tang M X, Dunsby C 2013 Phys. Med. Biol. 58 6447Google Scholar

    [14]

    Desailly Y, Couture O, Fink M, Tanter M 2013 Appl. Phys. Lett. 103 189Google Scholar

    [15]

    Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M 2015 Nature 527 499Google Scholar

    [16]

    Fanglue L, Shelton S E, Espíndola D, Rojas J D, Gianmarco P, Dayton P A 2017 Theranostics 7 196Google Scholar

    [17]

    Xu K L, Guo X Y, Sui Y H, Hingot V, Couture O, Ta D A, Wang W Q 2021 IEEE International Ultrasonics Symposium (IUS)

    [18]

    郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮 2022 物理学报 71 174302Google Scholar

    Yu J J, Guo X Y, Sui Y H, Song J P, Ta D A , Mei Y F, Xu K L 2022 Acta Phys. Sin. 71 174302Google Scholar

    [19]

    Demené C, Robin J, Dizeux A, Heiles B, Pernot M, Tanter M, Perren, Transcranial F 2021 Nat. Biomed. Eng. 5 219Google Scholar

    [20]

    Huang C, Zhang W, Gong P, Lok U W, Chen S 2021 Phys. Med. Biol. 66 8Google Scholar

    [21]

    Couture O, Hingot V, Heiles B, Muleki-Seya P, Tanter M 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 1304Google Scholar

    [22]

    Christensen-Jeffries K, Couture O, Dayton P A, Eldar Y, Hynynen K, Kiessling F, O'Reilly M, Pinton G, Schmitz G, Tang M, Tanter M, van Sloun R J G 2020 Ultrasound Med. Biol. 46 4Google Scholar

    [23]

    Youn J, Ommen M L, Stuart M B, Thomsen E V, Jensenet J A 2019 IEEE International Ultrasonics Symposium (IUS)

    [24]

    Sloun R J G v , Solomon O, Bruce M, Khaing Z Z, Wijkstra H, Eldar Y C, Mischi M 2021 IEEE Trans. Med. Imaging 40 829Google Scholar

    [25]

    Liu X, Zhou T, Lu M, Yang Y, He Q, Luo J 2020 IEEE Trans. Med. Imaging 39 3064Google Scholar

    [26]

    Bar-Zion A, Solomon O, Tremblay-Darveau C, Adam D, Eldar Y. C 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 2365Google Scholar

    [27]

    Bar-Zion A, Tremblay-Darveau C, Solomon O, Adam D, Eldar Y. C 2016 IEEE Trans. Med. Imaging 36 169Google Scholar

    [28]

    Nieuwenhuizen R P, Lidke K A, Bates M, Puig D L, Grunwald D, Stallinga S, Rieger B 2013 Nat. Methods 10 557Google Scholar

    [29]

    Jensen J A, Holm O, Jerisen L J, Bendsen H, Nikolov I S 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 881Google Scholar

    [30]

    Tanter M, Fink M Ultrafast Imaging in Biomedical Ultrasound. 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 102Google Scholar

    [31]

    Montaldo G, Tanter M, Bercoff J, Benech N, Fink M 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 489Google Scholar

    [32]

    Ledoux L, Brands P J, Hoeks A 1997 Ultrason. Imaging 19 1Google Scholar

    [33]

    Baranger J, Arnal B, Perren F, Baud O, Tanter M, Demené C 2018 IEEE Trans. Med. Imaging 37 1574Google Scholar

    [34]

    Demené C, Deffieux T, Pernot M, Osmanski B F, Biran V, Gennisson J L, Sieu L A, Bergel A, Franqui S, Correas J M 2015 IEEE Trans. Med. Imaging 34 2271Google Scholar

    [35]

    Hingot V, Errico C, Tanter M, Couture O 2017 Ultrasonics 77 17Google Scholar

    [36]

    Heiles  B, Chavignon  A, Hingot V, Lopez P, Teston E, Couture O 2021 Nat. Biomed. Eng. 6 605

    [37]

    Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 2014 Adv. Neural Inf. Process. Syst. 27 2672Google Scholar

    [38]

    Ronneberger O, Fischer P, Brox T 2015 Medical Image Computing and Computer-Assisted Intervention, PT III 9351 234

    [39]

    Nitish S, Geoffrey H, Alex K, Ilya S, Ruslan S 2014 J. Mach. Learn. Res. 15 1929Google Scholar

    [40]

    Zhao H, Gallo O, Frosio I, Kautz J 2017 IEEE Trans. Comput. Imaging 3 47Google Scholar

    [41]

    Ouyang W, Aristov A, Hao X, Lelek M, Zimmer C 2018 Nat. Biotechnol. 36 460Google Scholar

    [42]

    Hingot V, Errico C, Heiles B, Rahal L, Tanter M, Couture O 2019 Sci. Rep. 9 2456Google Scholar

    [43]

    Hingot V, Chavignon A, Heiles B, Couture O 2021 IEEE Trans. Med. Imaging 40 3812Google Scholar

  • 图 1  超声成像分辨率及微泡的B-mode图像 (a) 两微泡间距恰好为半波长; (b) 两微泡间距在半波长内; (c) 实验测量的微泡点扩散函数及其中心定位(由红点标记)

    Fig. 1.  The resolution of ultrasound imaging and a B-mode image of microbubbles: (a) The two sources are exactly half a wavelength apart; (b) the two sources are within a half-wavelength distance; (c) microbubbles appearing as point spread function and their localizations.

    图 2  uULM常规流程 (a) 超快超声数据在体采集; (b) 杂波滤除; (c) 运动校准; (d) 微泡定位; (e) 微泡追踪; (f) 超分辨率图像重建

    Fig. 2.  uULM conventional process: (a) In vivo acquisition of ultrafast ultrasound data ; (b) clutter filtering; (c) motion correction; (d) microbubble localization; (e) microbubble tracking; (f) super-resolution image reconstruction.

    图 3  GAN-uULM方法整体框架

    Fig. 3.  Overall architecture of the GAN-uULM method.

    图 4  小动物用超快超分辨率超声脑成像实验平台

    Fig. 4.  Ultrafast super-resolution ultrasound brain imaging experimental platform for small animals.

    图 5  大鼠脑超分辨率定位显微 (a) 使用标准uULM方法的血管造影; (b) 使用GAN-uULM方法的血管造影

    Fig. 5.  Ultrasound Localization Microscopy in a rat brain: (a) Angiogram reconstruction using the standard uULM method; (b) angiogram reconstruction using the GAN-uULM method.

    图 6  全血管造影的局部特写及其沿白色虚线的强度分布图. 使用标准uULM (a) 和GAN-uULM (b) 分别对体内数据集进行uULM血管造影得到的局部放大图; (c) 绿色和蓝色曲线表示沿水平虚线的强度分布图

    Fig. 6.  Zoomed-in regions of interest from the whole angiogram and their intensity profiles along the white dashed line. Magnified regions from uULM Angiograms for an in-vivo dataset using the standard uULM method (a) and the GAN-uULM (b); (c) the intensity profiles along a given horizontal dashed line overlaid in green and blue.

    图 7  血管饱和度与累积采集时长的关系曲线

    Fig. 7.  The relationship curves between vascular saturation and cumulative acquisition time.

    图 8  不同采集时长对应的超分辨率血流图像 (a), (b) uULM和GAN-uULM在采集时长为40 s时的血流图像; (c), (d) uULM和GAN-uULM在采集时长为80 s时的血流图像

    Fig. 8.  Super-resolution blood flow images with different cumulative acquisition times: (a), (b) The results of uULM and GAN-uULM with acquisition time of 40 s; (c), (d) the results of uULM and GAN-uULM with acquisition time of 80 s.

    图 9  基于FRC曲线的分辨率测量 (a), (b) 将重建结果随机拆分的两个子图像; (c), (d) 2D FFT得到频谱图; (e) FRC曲线, FRC曲线与1/2 bit (黄色)阈值曲线的两个交点被用于测定图像分辨率; (f) 分辨率与累积采集时长的关系曲线

    Fig. 9.  Resolution measurements based on FRC curves: (a), (b) Two sub-images obtained by randomly splitting the reconstruction results; (c), (d) the frequency spectrograms obtained by 2D FFT; (e) the FRC curves, the two intersections of the FRC curves with the 1/2 bit (yellow) threshold curve are used to determine the image resolution; (f) the relationship curves between resolution and cumulative acquisition time.

  • [1]

    钟传钰, 郑元义 2021 中国医学影像技术 37 1799Google Scholar

    Zhong C Y, Zheng Y Y 2021 Chin. J. Med. Imaging Technol. 37 1799Google Scholar

    [2]

    王宇森, 陶鸿根 1991 中华内分泌代谢杂志 7 2

    Wang Y S, Tao H G 1991 Chin. J. Endocrinol. Metab. 7 2

    [3]

    Chugh B P, Lerch J P, Yu L X, Pienkowski M, Harrison R V, Henkelman R M, Sled J G 2009 Neuroimage 47 1312Google Scholar

    [4]

    Huang C H, Chen C C V, Siow T Y, Hsu S H S, Hsu Y H, Jaw F S, Chang C 2013 PLoS One 8 e78186Google Scholar

    [5]

    Hong G, Lee J C, Robinson J T, Raaz U, Xie L M, Huang, N F, Cooke J P, Dai H J 2012 Nat. Med. 18 1841Google Scholar

    [6]

    Yao J, Wang L, Yang J M, Maslov K I, Wong T T W, Li L, Huang C H, Zou J, Wang L V 2015 Nat. Methods 12 407Google Scholar

    [7]

    O"Reilly M A, Hynynen K 2013 Med. Phys. 40 110701Google Scholar

    [8]

    Jiang C, Li Y, Xu K, Ta D 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 72Google Scholar

    [9]

    臧佳琦, 许凯亮, 韩清见, 陆起涌, 梅永丰, 他得安 2021 物理学报 70 114304Google Scholar

    Zang J Q, Xu K L, Han Q J, Lu Q Y, Mei Y F, Ta D A 2021 Acta Phys. Sin. 70 114304Google Scholar

    [10]

    Sui Y H, Yan S Y, Zang J Q, Liu X, Ta D A, Wang W Q, Xu K L 2021 IEEE International Ultrasonics Symposium (IUS)

    [11]

    Sui Y H, Yan S Y, Yu J J, Song J P, Ta D A, Wang W Q, Xu K L 2022 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69 2425Google Scholar

    [12]

    Couture O, Bannouf S, Montaldo G, Aubry J F, Fink M 2009 Ultrasound Med. Biol. 35 1908Google Scholar

    [13]

    Viessmann O M, Eckersley R J, Christensen-Jeffries K, Tang M X, Dunsby C 2013 Phys. Med. Biol. 58 6447Google Scholar

    [14]

    Desailly Y, Couture O, Fink M, Tanter M 2013 Appl. Phys. Lett. 103 189Google Scholar

    [15]

    Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M 2015 Nature 527 499Google Scholar

    [16]

    Fanglue L, Shelton S E, Espíndola D, Rojas J D, Gianmarco P, Dayton P A 2017 Theranostics 7 196Google Scholar

    [17]

    Xu K L, Guo X Y, Sui Y H, Hingot V, Couture O, Ta D A, Wang W Q 2021 IEEE International Ultrasonics Symposium (IUS)

    [18]

    郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮 2022 物理学报 71 174302Google Scholar

    Yu J J, Guo X Y, Sui Y H, Song J P, Ta D A , Mei Y F, Xu K L 2022 Acta Phys. Sin. 71 174302Google Scholar

    [19]

    Demené C, Robin J, Dizeux A, Heiles B, Pernot M, Tanter M, Perren, Transcranial F 2021 Nat. Biomed. Eng. 5 219Google Scholar

    [20]

    Huang C, Zhang W, Gong P, Lok U W, Chen S 2021 Phys. Med. Biol. 66 8Google Scholar

    [21]

    Couture O, Hingot V, Heiles B, Muleki-Seya P, Tanter M 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 1304Google Scholar

    [22]

    Christensen-Jeffries K, Couture O, Dayton P A, Eldar Y, Hynynen K, Kiessling F, O'Reilly M, Pinton G, Schmitz G, Tang M, Tanter M, van Sloun R J G 2020 Ultrasound Med. Biol. 46 4Google Scholar

    [23]

    Youn J, Ommen M L, Stuart M B, Thomsen E V, Jensenet J A 2019 IEEE International Ultrasonics Symposium (IUS)

    [24]

    Sloun R J G v , Solomon O, Bruce M, Khaing Z Z, Wijkstra H, Eldar Y C, Mischi M 2021 IEEE Trans. Med. Imaging 40 829Google Scholar

    [25]

    Liu X, Zhou T, Lu M, Yang Y, He Q, Luo J 2020 IEEE Trans. Med. Imaging 39 3064Google Scholar

    [26]

    Bar-Zion A, Solomon O, Tremblay-Darveau C, Adam D, Eldar Y. C 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 2365Google Scholar

    [27]

    Bar-Zion A, Tremblay-Darveau C, Solomon O, Adam D, Eldar Y. C 2016 IEEE Trans. Med. Imaging 36 169Google Scholar

    [28]

    Nieuwenhuizen R P, Lidke K A, Bates M, Puig D L, Grunwald D, Stallinga S, Rieger B 2013 Nat. Methods 10 557Google Scholar

    [29]

    Jensen J A, Holm O, Jerisen L J, Bendsen H, Nikolov I S 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 881Google Scholar

    [30]

    Tanter M, Fink M Ultrafast Imaging in Biomedical Ultrasound. 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 102Google Scholar

    [31]

    Montaldo G, Tanter M, Bercoff J, Benech N, Fink M 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 489Google Scholar

    [32]

    Ledoux L, Brands P J, Hoeks A 1997 Ultrason. Imaging 19 1Google Scholar

    [33]

    Baranger J, Arnal B, Perren F, Baud O, Tanter M, Demené C 2018 IEEE Trans. Med. Imaging 37 1574Google Scholar

    [34]

    Demené C, Deffieux T, Pernot M, Osmanski B F, Biran V, Gennisson J L, Sieu L A, Bergel A, Franqui S, Correas J M 2015 IEEE Trans. Med. Imaging 34 2271Google Scholar

    [35]

    Hingot V, Errico C, Tanter M, Couture O 2017 Ultrasonics 77 17Google Scholar

    [36]

    Heiles  B, Chavignon  A, Hingot V, Lopez P, Teston E, Couture O 2021 Nat. Biomed. Eng. 6 605

    [37]

    Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 2014 Adv. Neural Inf. Process. Syst. 27 2672Google Scholar

    [38]

    Ronneberger O, Fischer P, Brox T 2015 Medical Image Computing and Computer-Assisted Intervention, PT III 9351 234

    [39]

    Nitish S, Geoffrey H, Alex K, Ilya S, Ruslan S 2014 J. Mach. Learn. Res. 15 1929Google Scholar

    [40]

    Zhao H, Gallo O, Frosio I, Kautz J 2017 IEEE Trans. Comput. Imaging 3 47Google Scholar

    [41]

    Ouyang W, Aristov A, Hao X, Lelek M, Zimmer C 2018 Nat. Biotechnol. 36 460Google Scholar

    [42]

    Hingot V, Errico C, Heiles B, Rahal L, Tanter M, Couture O 2019 Sci. Rep. 9 2456Google Scholar

    [43]

    Hingot V, Chavignon A, Heiles B, Couture O 2021 IEEE Trans. Med. Imaging 40 3812Google Scholar

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术. 物理学报, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 向鹏程, 蔡聪波, 王杰超, 蔡淑惠, 陈忠. 基于深度神经网络的时空编码磁共振成像超分辨率重建方法. 物理学报, 2022, 71(5): 058702. doi: 10.7498/aps.71.20211754
    [3] 战庆亮, 白春锦, 葛耀君. 基于时程深度学习的复杂流场流动特性表征方法. 物理学报, 2022, 71(22): 224701. doi: 10.7498/aps.71.20221314
    [4] 朱琦, 许多, 张元军, 李玉娟, 王文, 张海燕. 基于卷积神经网络的白蚀缺陷超声探测. 物理学报, 2022, 71(24): 244301. doi: 10.7498/aps.71.20221504
    [5] 郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮. 超分辨率超快超声脊髓微血管成像方法. 物理学报, 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [6] 赵伟瑞, 王浩, 张璐, 赵跃进, 褚春艳. 基于卷积神经网络的高精度分块镜共相检测方法. 物理学报, 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [7] 唐国智, 汪垒, 李顶根. 使用条件生成对抗网络生成预定导热率多孔介质. 物理学报, 2021, 70(5): 054401. doi: 10.7498/aps.70.20201061
    [8] 黄伟建, 李永涛, 黄远. 基于混合神经网络和注意力机制的混沌时间序列预测. 物理学报, 2021, 70(1): 010501. doi: 10.7498/aps.70.20200899
    [9] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法. 物理学报, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [10] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元. 基于深度卷积神经网络的大气湍流相位提取. 物理学报, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [11] 王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇. 基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测. 物理学报, 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [12] 王书, 任益充, 饶瑞中, 苗锡奎. 大气损耗对量子干涉雷达的影响机理. 物理学报, 2017, 66(15): 150301. doi: 10.7498/aps.66.150301
    [13] 龚志双, 王秉中, 王任, 臧锐, 王晓华. 基于光栅结构的远场时间反演亚波长源成像. 物理学报, 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [14] 何林阳, 刘晶红, 李刚. 基于多相组重建的航空图像超分辨率算法. 物理学报, 2015, 64(11): 114208. doi: 10.7498/aps.64.114208
    [15] 邓承志, 田伟, 陈盼, 汪胜前, 朱华生, 胡赛凤. 基于局部约束群稀疏的红外图像超分辨率重建. 物理学报, 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [16] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐. 基于远场时间反演的亚波长天线阵列研究. 物理学报, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [17] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法. 物理学报, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [18] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理. 物理学报, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [19] 葛广顶, 王秉中, 黄海燕, 郑罡. 时间反演电磁波超分辨率特性. 物理学报, 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [20] 张海涛, 巩马理, 赵达尊, 闫平, 崔瑞祯, 贾维溥. 实现超分辨率的微变焦法. 物理学报, 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
计量
  • 文章访问数:  4836
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-14
  • 修回日期:  2022-08-01
  • 上网日期:  2022-11-14
  • 刊出日期:  2022-11-20

/

返回文章
返回