搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信息熵赋权的多通道卷积神经网络节点重要性评估方法

姜廷帅 阮逸润 李海 白亮 袁逸飞 于天元

引用本文:
Citation:

基于信息熵赋权的多通道卷积神经网络节点重要性评估方法

姜廷帅, 阮逸润, 李海, 白亮, 袁逸飞, 于天元

Entropy-based weighted multi-channel convolutional neural network method for node importance assessment

JIANG Tingshuai, RUAN Yirun, LI Hai, BAI Liang, YUAN Yifei, YU Tianyuan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用定量分析的方法识别复杂网络中的关键节点, 或者评估某节点相对于其他一个或多个节点的重要程度, 是网络科学研究的热点问题. 针对节点重要性识别中存在的指标权重主观赋值和全局和局部信息融合不足等问题, 本文提出一种基于信息熵赋权的多通道卷积神经网络框架(entropy-based weighted multi-channel convolutional neural network framework, EMCNN). 该方法构建了一种无参熵权分配模型, 通过计算不同节点重要性指标的熵权值, 突破了传统方法依赖经验参数的局限性. 同时, 对全局与局部信息进行解耦重构, 构建多通道特征图, 并结合卷积神经网络的特征提取能力和注意力机制的关键特征融合能力, 实现全局与局部特征的深度融合学习, 从而更精准地识别网络节点的重要性. 为验证该方法的有效性, 本文在9个真实世界网络和3个合成网络上利用SIR模型进行仿真实验, 结果表明EMCNN方法有效克服了评估角度的局限性, 能在不同传播率下对节点的传播影响力进行有效评估, 在相关性及准确性上优于当前主流算法.
    Identifying key nodes in complex networks or evaluating the relative node importance with respect to others by using quantitative methods is a fundamental issue in network science. To address the limitations of existing approaches—namely the subjectivity in assigning weights to importance indicators and the insufficient integration of global and local structural information—this paper proposes an entropy-weighted multi-channel convolutional neural network framework (EMCNN). First, a parameter-free entropy-based weight allocation model is constructed to dynamically assign weights to multiple node importance indicators by computing their entropy values, thereby mitigating the subjectivity inherent in traditional parameter-setting methods and enhancing the objectivity of indicator fusion. Second, global and local structural features are decoupled and reconstructed into separate channels to form multi-channel feature maps, which significantly enhance the representational capacity of the network structure. Third, by leveraging the feature extraction capabilities of convolutional neural networks and the integration power of attention mechanisms, the framework extracts deep representations of nodes from the multi-channel feature maps, while emphasizing key structural information through attention-based weighting, thus enabling more accurate identification and characterization of node importance. To validate the effectiveness of the proposed method, extensive experiments are conducted on nine real-world networks by using the SIR spreading model, thereby assessing performance in terms of correlation, accuracy, and robustness. The Kendall correlation coefficient is used as the primary evaluation metric to measure the consistency between predicted node importance and actual spreading influence. Additionally, experiments are performed on three representative synthetic networks to further test the model’s generalizability. Experimental results demonstrate that EMCNN consistently and effectively evaluates node influence under varying transmission rates, and significantly outperforms mainstream algorithms in both correlation and accuracy. These findings highlight the powerful generalization ability and wide applicability of this method in the identification of key nodes in complex networks.
  • 图 1  EMCNN框架识别过程

    Fig. 1.  EMCNN framework identification process.

    图 2  一跳邻接矩阵${\boldsymbol{E}}$提取示意图, 展示了从一个包含8个节点和11条边的局部网络中, 获取节点3的大小为$L = 5$的一跳邻接矩阵, 首先识别与节点3直接相连的邻居节点(节点1, 2, 4, 6, 7), 并依据其度值${W^{{\text{DC}}}}$进行降序排序, 随后根据排序后的节点顺序构建出节点3的一跳邻接矩阵${{\boldsymbol{E}}_3}$

    Fig. 2.  Illustration of one-hop adjacency matrix ${\boldsymbol{E}}$ extraction. The figure shows the process of extracting a one-hop adjacency matrix of size $L = 5$ for node 3 from a local network with 8 nodes and 11 edges, the direct neighbors of node 3 (nodes 1, 2, 4, 6, and 7) are first identified and then sorted in descending order based on their degree values ${W^{{\text{DC}}}}$, finally, the one-hop adjacency matrix ${{\boldsymbol{E}}_3}$ is constructed according to the sorted neighbor order.

    图 3  参数分析

    Fig. 3.  Parameter analysis.

    图 4  8种方法预测的节点影响力与SIR传播感染节点数的相关性(由于各算法在评分机制和输出尺度上的差异, 横坐标的取值范围不一致) (a) Facebook; (b) Netscience; (c) Protain; (d) Yeast; (e) CA-GrQc; (f) Lesmis; (g) Jazz; (h) USAir; (i) Faa

    Fig. 4.  Correlation between the node influence predicted by eight algorithms and the number of infected nodes simulated by the SIR model: (a) Facebook; (b) Netscience; (c) Protain; (d) Yeast; (e) CA-GrQc; (f) Lesmis; (g) Jazz; (h) USAir; (i) Faa. Due to differences in scoring mechanisms and output scales among the algorithms, the horizontal axis values are not on a unified scale.

    图 5  8种节点排序性方法在9个真实网络上的Kendall相关系数对比 (a) Facebook; (b) Netscience; (c) Protain; (d) Yeast; (e) CA-GrQc; (f) Lesmis; (g) Jazz; (h) USAir; (i) Faa

    Fig. 5.  Comparison of Kendall correlation coefficient for 8 node ranking methods on 9 networks: (a) Facebook; (b) Netscience; (c) Protain; (d) Yeast; (e) CA-GrQc; (f) Lesmis; (g) Jazz; (h) USAir; (i) Faa.

    图 6  不同比例节点下8种评估算法的Kendall相关系数对比 (a) Facebook; (b) Netscience; (c) Protain; (d) Yeast; (e) CA-GrQc; (f) Lesmis; (g) Jazz; (h) USAir; (i) Faa

    Fig. 6.  Comparison of Kendall correlation coefficients of 8 node influence evaluation algorithms under different scale nodes: (a) Facebook; (b) Netscience; (c) Protain; (d) Yeast; (e) CA-GrQc; (f) Lesmis; (g) Jazz; (h) USAir; (i) Faa.

    图 7  合成网络数据集上8种评估算法的Kendall相关系数对比 (a) LFR2000-5; (b) LFR2000-10; (c) BA200-4

    Fig. 7.  Comparison of Kendall correlation coefficients of 8 evaluation algorithms on synthetic networks datasets: (a) LFR2000-5; (b) LFR2000-10; (c) BA200-4.

    表 1  真实网络参数描述

    Table 1.  Parameters description of real networks.

    网络$N$$E$$\langle d\rangle $${\beta _{{\text{th}}}}$$\beta $$\langle k\rangle $$C$$k{s_{\max }}$
    CA-GrQc4158134226.0490.05560.066.45590.55643
    Facebook32422183.0530.04660.0513.6910.46518
    Netscience3799146.0410.12460.134.82320.7418
    Protain278367264.8390.06330.074.4720.0716
    Yeast145819486.8120.14030.152.67210.075
    Lesmis772542.6410.08290.096.59740.5739
    Jazz19827422.2350.02580.0327.6960.61729
    USAir33221262.2730.02250.0312.8070.426
    Faa122624085.9280.13590.143.92820.0674
    下载: 导出CSV

    表 2  合成网络参数描述

    Table 2.  Parameters description of synthetic networks.

    网络$N$$E$$\langle d\rangle $${\beta _{{\text{th}}}}$$\beta $$\langle k\rangle $$C$$k{s_{\max }}$
    LFR2000-52000100345.698360.098360.150.377398
    LFR2000-102000206344.472040.072270.08100.4104111
    BA500-45009963.715120.096170.140.058802
    下载: 导出CSV
  • [1]

    Lü L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1Google Scholar

    [2]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200Google Scholar

    [3]

    Albert R, Barabási A L 2002 Rev. Modern Phys. 74 47Google Scholar

    [4]

    Zeng Y 2020 Neurocomputing 416 158Google Scholar

    [5]

    Albert R, Jeong H, Barabási A L 1999 Nature 401 130Google Scholar

    [6]

    Lü L, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168Google Scholar

    [7]

    Xu X, Zhu C, Wang Q Y, Zhu X Q, Zhou Y 2020 Sci. Rep. 10 2691Google Scholar

    [8]

    Brin S, Page L 1998 8204 ; Computer Networks and ISDN Systems 30 107

    [9]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [10]

    Sabidussi G 1966 Psychometrika 31 581Google Scholar

    [11]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [12]

    Bonacich P 1987 Am. J. Sociology 92 1170Google Scholar

    [13]

    Lü L, Zhang Y C, Yeung C H, Zhou T 2011 PLoS One 6 21202Google Scholar

    [14]

    Curado M, Tortosa L, Vicent J F 2023 Inform. Sci. 628 177Google Scholar

    [15]

    Ullah A, Wang B, Sheng J F, Long J, Khan N, Sun Z J 2021 Expert Syst. Appl. 186 115778Google Scholar

    [16]

    Liu W Z, Lu P L, Zhang T 2023 IEEE Trans. Comput. Soc. Syst. 11 2105

    [17]

    Ruan Y R, Liu S Z, Tang J, Guo Y M, Yu T Y 2024 Expert Syst. Appl. 268 126292

    [18]

    Rezaei A A, Munoz J, Jalili M, Khayyam H 2023 Expert Syst. Appl. 214 119086Google Scholar

    [19]

    Li X Y, Zhang Z J, Liu J M, Gai K K 2019 Proceedings of the 2019 ACM International Symposium on Blockchain and Secure Critical Infrastructure New York, USA, May 9–12,2019 p13–17

    [20]

    Zhao G H, Jia P, Zhou A M, Zhang B 2020 Neurocomputing 414 18Google Scholar

    [21]

    Yu E Y, Wang Y P, Fu Y, Chen D B, Xie M 2020 Knowl-Based Syst. 198 105893Google Scholar

    [22]

    Zhang M, Wang X J, Jin L, Song M, Li Z Y 2022 Neurocomputing 497 13Google Scholar

    [23]

    王博雅, 杨小春, 卢升荣, 唐勇平, 洪树权, 蒋惠园 2024 物理学报 73 226401Google Scholar

    Wang B Y, Yang X C, Lu S R, Tang Y P, Hong S Q, Jiang H Y 2024 Acta Phys. Sin. 73 226401Google Scholar

    [24]

    Chen L Y, Xi Y, Dong L, Zhao M J, Li C L, Liu X, Cui X H 2024 Inf. Process. Manag. 61 103775Google Scholar

    [25]

    Tang J X, Qu J T, Song S H, Zhao Z L, Du Q 2024 J. King Saud Univ. –Comput. Inf. Sci. 36 102183Google Scholar

    [26]

    Zhang P, Wang J L, Li X J, Li M H, Di Z R, Fan Y 2008 Physica A 387 6869Google Scholar

    [27]

    Zhang J X, Chen D B, Dong Q, Zhao Z D 2016 Sci. Rep. 6 27823Google Scholar

    [28]

    Hajarathaiah K, Enduri M K, Dhuli S, Anamalamudi S, Cenkeramaddi L R 2023 IEEE Access 11 808Google Scholar

    [29]

    Sheng J F, Dai J Y, Wang B, Duan G H, Long J, Zhang J K, Guan K R, Hu S, Chen L, Guan W H 2020 Physica A 541 123262Google Scholar

    [30]

    Kermack W O, McKendrick A G 1927 Proc. R. Soc. Lond. Ser. A - Contain. Pap. Math. Phys. Charact. 115 700

    [31]

    Bae J, Kim S 2014 Physica A 395 549Google Scholar

    [32]

    Kendall M G 1945 Biometrika 33 239Google Scholar

    [33]

    Barabási A L, Albert R 1999 Sci. 286 509Google Scholar

    [34]

    Dorogovtsev S N, Goltsev A V, Mendes J F F 2006 Phys. Rev. Lett. 96 040601Google Scholar

    [35]

    Blagus N, Šubelj L, Bajec M 2012 Physica A 391 2794Google Scholar

    [36]

    Newman M E J 2006 Phys. Rev. E 74 036104Google Scholar

    [37]

    Rual J F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz G F, Gibbons F D, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg D S, Zhang L V, Wong S L, Franklin G, Li S M, Albala J S, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski R S, Vandenhaute J, Zoghbi H Y, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick M E, Hill D E, Roth F P, Vidal M 2005 Nature 437 1173

    [38]

    Jeong H, Mason S P, Barabási A L, Oltvai Z N 2001 Nature 411 41Google Scholar

    [39]

    Knuth D E 1993 The Stanford GraphBase: A Platform for Combinatorial Computing (New York, USA: ACM Press

    [40]

    Gleiser P M, Danon L 2003 Adv. Complex Syst. 6 565Google Scholar

    [41]

    Colizza V, Pastor-Satorras R, Vespignani A 2007 Nat. Phys. 3 276Google Scholar

    [42]

    Kunegis J 2013 Proceedings of the 22nd International Conference on World Wide Web Rio de Janeiro, Brazil, May 13–17, 2013 p1343–1350

    [43]

    Batagelj V, Mrvar A 1998 Connections 21 47

  • [1] 王翔, 周义深, 张轩阁, 陈希浩. 融合注意力机制的卷积网络单像素成像. 物理学报, doi: 10.7498/aps.74.20250010
    [2] 梁宗文, 廖俊卓, 薛崇琛, 敖永才. 双维引力场模型: 个体潜能与地理位置对节点性能的量化评估. 物理学报, doi: 10.7498/aps.74.20241256
    [3] 朱顺凯, 袁方, 胡凯, 皮涛涛, 朱熙铖, 李程. 基于卷积神经网络的双站雷达散射截面减缩超表面设计. 物理学报, doi: 10.7498/aps.74.20250109
    [4] 吴银花, 种喆, 朱鹏飞, 陈莎莎, 周顺. 基于卷积神经网络的非对称共光路相干色散光谱仪背景白光干扰去除. 物理学报, doi: 10.7498/aps.74.20250090
    [5] 王博雅, 杨小春, 卢升荣, 唐勇平, 洪树权, 蒋惠园. 基于图卷积神经网络的多维度节点重要性评估方法. 物理学报, doi: 10.7498/aps.73.20240937
    [6] 汪亭亭, 梁宗文, 张若曦. 基于信息熵与迭代因子的复杂网络节点重要性评价方法. 物理学报, doi: 10.7498/aps.72.20221878
    [7] 赵伟瑞, 王浩, 张璐, 赵跃进, 褚春艳. 基于卷积神经网络的高精度分块镜共相检测方法. 物理学报, doi: 10.7498/aps.71.20220434
    [8] 黄伟建, 李永涛, 黄远. 基于混合神经网络和注意力机制的混沌时间序列预测. 物理学报, doi: 10.7498/aps.70.20200899
    [9] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法. 物理学报, doi: 10.7498/aps.70.20201362
    [10] 杨松青, 蒋沅, 童天驰, 严玉为, 淦各升. 基于Tsallis熵的复杂网络节点重要性评估方法. 物理学报, doi: 10.7498/aps.70.20210979
    [11] 王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇. 基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测. 物理学报, doi: 10.7498/aps.69.20191935
    [12] 黄丽亚, 汤平川, 霍宥良, 郑义, 成谢锋. 基于加权K-阶传播数的节点重要性. 物理学报, doi: 10.7498/aps.68.20190087
    [13] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估. 物理学报, doi: 10.7498/aps.67.20172295
    [14] 阮逸润, 老松杨, 王竣德, 白亮, 陈立栋. 基于领域相似度的复杂网络节点重要度评估算法. 物理学报, doi: 10.7498/aps.66.038902
    [15] 王雨, 郭进利. 基于多重影响力矩阵的有向加权网络节点重要性评估方法. 物理学报, doi: 10.7498/aps.66.050201
    [16] 李先锐, 朱彦丽. DC-DC变换器的信息熵分析. 物理学报, doi: 10.7498/aps.63.238401
    [17] 刘建国, 任卓明, 郭强, 汪秉宏. 复杂网络中节点重要性排序的研究进展. 物理学报, doi: 10.7498/aps.62.178901
    [18] 任卓明, 邵凤, 刘建国, 郭强, 汪秉宏. 基于度与集聚系数的网络节点重要性度量方法研究. 物理学报, doi: 10.7498/aps.62.128901
    [19] 于会, 刘尊, 李勇军. 基于多属性决策的复杂网络节点重要性综合评价方法. 物理学报, doi: 10.7498/aps.62.020204
    [20] 方小玲, 姜宗来. 基于脑电图的大脑功能性网络分析. 物理学报, doi: 10.7498/aps.56.7330
计量
  • 文章访问数:  482
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-12
  • 修回日期:  2025-04-17
  • 上网日期:  2025-04-19

/

返回文章
返回