搜索

x
中国物理学会期刊

基于加权K-阶传播数的节点重要性

CSTR: 32037.14.aps.68.20190087

Node importance based on the weighted K-order propagation number algorithm

CSTR: 32037.14.aps.68.20190087
PDF
HTML
导出引用
  • 节点重要性对于分析网络结构具有重要意义. 为了充分刻画网络全局和局部特性, 本研究基于网络拓扑结构对疾病传播过程进行了抽象, 分别设置各个节点为传染源, 在经历传播时长K后, 将网络中已感染节点的数量定义为K-阶传播数, 最终基于不同K值下的K-阶传播数得到节点重要性结果. 对Watts-Strogatz小世界网络和海豚网络的仿真实验表明, 加权K-阶传播数法对节点重要性的评估较其他方法更为合理, 能够细致地刻画小世界网络中长程连接对信息传输的影响, 提高海豚网络中对社区交流起关键作用的节点的重视程度. 本文利用蓄意攻击策略对美国西部电网、芝加哥公路网络、网络科学家合著网络以及小鼠神经纤维束网络进行了研究, 即依照节点重要性由高到低的排序依次攻击网络. 结果显示, 相较于其他方法, 基于加权K-阶传播数法仅需移除少量重要节点便可实现对网络结构的充分破坏.

     

    The measurement of node importance is significant for analyzing a network structure. To comprehensively reflect the global and local network features, in this paper we abstract the propagating process of epidemic diseases based on the network topology structure, and then respectively sets each node as an infection source. After a certain dissemination time K, the number of infected nodes in the network is defined as the K-order propagation number, and the weighted sum of K-order propagation numbers under different values of K is taken as the important index of nodes. The simulation experiments of Watts-Strogatz small-world networks and a dolphin network show that the weighted K-order propagation number algorithm is more effective than the traditional method in evaluating the importance of nodes. For the Watts-Strogatz small-world networks, it can reflect the influence of long-distance connections on information transmission in detail. For the dolphin network, the weighted K-order propagation number algorithm significantly raises the profile of those nodes which play a key role in the information communication between different dolphin communities. In addition, in this paper we use a deliberate attacking method to analyze the western power grid of the United States, the road transportation network of the Chicago region, the co-authorship network in network science and the axonal tracts’ network between neurons of mouse. According to the specific order of the node importance from high to low, network nodes are attacked in turn, that is, all edges of the attacked nodes are removed. The analysis results of network parameters such as the network efficiency and the node number of the maximum sub-graph changing with the attacking times show that comparing with other evaluation indices of node importance such as degree, Ren method, Chen method, eigenvector method, Katz index, PageRank, CI method and K-shell, the weighted K-order propagation number algorithm focuses much on destroying the major structure, and all of the above four networks will break down if only a small number of important nodes are attacked. For example, after attacking only 100 nodes, the network efficiency of the western power grid of the United States is down by 90%, and after attacking 200 nodes, the network scale of the maximum sub-graph is nearly 3% of the original network.

     

    目录

    /

    返回文章
    返回