搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微博双向关注网络节点中心性及传播 影响力的分析

苑卫国 刘云 程军军 熊菲

引用本文:
Citation:

微博双向关注网络节点中心性及传播 影响力的分析

苑卫国, 刘云, 程军军, 熊菲

Empirical analysis of microblog centrality and spread influence based on Bi-directional connection

Yuan Wei-Guo, Liu Yun, Cheng Jun-Jun, Xiong Fei
PDF
导出引用
  • 根据新浪微博的实际数据, 建立了两个基于双向关注的用户关系网络, 通过分析网络拓扑统计特征, 发现二者均具有小世界、无标度特征. 通过对节点度、紧密度、介数和k-core 四个网络中心性指标进行实证分析, 发现节点度服从分段幂率分布; 介数相比其他中心性指标差异性最为显著; 两个网络均具有明显的层次性, 但不是所有度值大的节点核数也大; 全局范围内各中心性指标之间存在着较强的相关性, 但在度值较大的节点群这种相关性明显减弱. 此外, 借助基于传染病动力学的SIR信息传播模型来分析四种指标在刻画节点传播能力方面的差异性, 仿真结果表明, 选择具有不同中心性指标的初始传播节点, 对信息传播速度和范围均具有不同影响; 紧密度和k-core较其他指标可以更加准确地描述节点在信息传播中所处的网络核心位置, 这有助于识别信息传播拓扑网络中的关键节点.
    The identifying of the most influential nodes in the complex network is of great significance for information dissemination and control. We collect actual data from Sina Weibo and establish two user relationship networks based on bi-directional concern. By analyzing the statistical characteristics of the network topology, we find that each of them has a small world and scale free characteristics. Moreover, we describe four network centrality indicators, including node degree, closeness, betweenness and k-Core. Through empirical analysis of four-centrality metric distribution, we find that the node degrees follow a segmented power-law distribution; betweenness difference is most significant; both networks possess significant hierarchy, but not all of the nodes with higher degree have the greater k-Core values; strong correlation exists between the centrality indicators of all nodes, but this correlation is weakened in the node with higher degree value. The two networks are used to simulate the information spreading process with the SIR information dissemination model based on infectious disease dynamics. The simulation results show that there are different effects on the scope and speed of information dissemination under different initial selected individuals. We find that the closeness and k-Core can be more accurate representations of the core of the network location than other indicators, which helps us to identify influential nodes in the information dissemination network.
    • 基金项目: 国家自然科学基金 (批准号: 61172072, 61271308);北京市自然科学基金(批准号: 11DA1454) 和中央高校基本科研业务费专项资金 (批准号: 2011YJS215) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172072, 61271308), the Beijing Natural Science Foundation (Grant No. 11DA1454) and the Fundamental Research Funds for the Central Universities (Grant No. 2011YJS215).
    [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabási A L, Albert R 1999 Science 286 509

    [3]

    Newman M E J 2003 SIAM Rev. 45 167

    [4]

    Newman M E J, Park J 2003 Phys. Rev. E 68 036122

    [5]

    Kumar R, Novak J, Tomkins A 2006 Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Philadelphia, USA, August 20-23, 2006 p611

    [6]

    Ahn Y Y, Han S, Kwak H, Moon S, Jeong H 2007 Proceedings of the 16th International Conference on World Wide Web Banff, Canada, May 8-12, 2007 p835

    [7]

    Mislove A, Marcon M, Gummadi K P, Druschel P, Bhattacharjee B 2007 Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement San Diego, USA, October 24-26, 2007 p29

    [8]

    Fu F, Liu L, Wang L 2008 Physica A 387 675

    [9]

    Hu H B, Wang X F 2009 Phys. Lett. A 373 1105

    [10]

    Si X M, Liu Y 2011 Acta Phys. Sin. 60 78903 (in Chinese) [司夏萌, 刘云 2011 物理学报 60 78903]

    [11]

    Java A, Song X, Finin T, Tseng B 2007 Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Snalysis San Jose, USA, August 12, 2007 p56

    [12]

    Kwak H, Lee C, Park H, Moon S 2010 Proceedings of the 19th International Conference on World Wide web Raleigh, USA, April 26-30, 2010 p591

    [13]

    Wasserman S, Faust K 1994 Social Network Analysis: Methods and Applications (New York: Cambridge Univ. Press) p169

    [14]

    Koschôtzki D, Schreiber F 2004 Proceedings of the German Conference on Bioinformatics Bielefeld, Germany, October 4-6, 2004 p199

    [15]

    Guimerá R, Mossa S, Turtschi A, Amaral L A N 2005 Proc. Natl. Acad. Sci. USA 102 7794

    [16]

    Zheng X, Chen J P, Shao J L, Bie L D 2012 Acta Phys. Sin. 61 190510 (in Chinese) [郑啸, 陈建平, 邵佳丽, 别立东 2012 物理学报 61 190510]

    [17]

    Carmi S, Havlin S, Kirkpatrick S, Shavitt Y, Shir E 2007 Proc. Natl. Acad. Sci. USA 104 11150

    [18]

    Cai K Q, Zhang J, Du W B, Cao X B 2012 Chin. Phys. B 21 28903

    [19]

    Paolo C, Vito L, Sergio P 2006 Phys. Rev. E 73 036125

    [20]

    Wang L, Zhang Q Q 2006 Complex Systems and Complexity Science 3 13 (in Chinese) [王林, 张倩倩 2006 复杂系统与复杂性科学 3 13]

    [21]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [22]

    Borge-Holthoefer J, Moreno Y 2012 Phys. Rev. E 85 026116

    [23]

    Chen D B, Lü L Y, Shang M S, Zhang Y C, Zhou T 2012 Physica A 391 1777

    [24]

    Zhou X, Zhang F M, Li K W, Hui X B, Wu H S 2012 Acta Phys. Sin. 61 50201 (in Chinese) [周漩, 张凤鸣, 李克武, 惠晓滨, 吴虎胜 2012 物理学报 61 50201]

    [25]

    Holme P, Kim B J, Yoon C N, Han S K 2002 Phys. Rev. E 65 056109

    [26]

    Zhang Y C, Liu Y, Zhang H F, Cheng H, Xiong F 2011 Acta Phys. Sin. 60 50501 (in Chinese) [张彦超, 刘云, 张海峰, 程辉, 熊菲 2011 物理学报 60 50501]

    [27]

    Xiong X, Hu Y 2012 Acta Phys. Sin. 61 150509 (in Chinese) [熊熙, 胡勇 2012 物理学报 61 150509]

    [28]

    Alvarez-Hamelin J I, Dallásta L, Barrat A, Vespignani A 2006 Advances in Neural Information Processing Systems 18 (Cambridge: MIT Press) p41

  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabási A L, Albert R 1999 Science 286 509

    [3]

    Newman M E J 2003 SIAM Rev. 45 167

    [4]

    Newman M E J, Park J 2003 Phys. Rev. E 68 036122

    [5]

    Kumar R, Novak J, Tomkins A 2006 Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Philadelphia, USA, August 20-23, 2006 p611

    [6]

    Ahn Y Y, Han S, Kwak H, Moon S, Jeong H 2007 Proceedings of the 16th International Conference on World Wide Web Banff, Canada, May 8-12, 2007 p835

    [7]

    Mislove A, Marcon M, Gummadi K P, Druschel P, Bhattacharjee B 2007 Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement San Diego, USA, October 24-26, 2007 p29

    [8]

    Fu F, Liu L, Wang L 2008 Physica A 387 675

    [9]

    Hu H B, Wang X F 2009 Phys. Lett. A 373 1105

    [10]

    Si X M, Liu Y 2011 Acta Phys. Sin. 60 78903 (in Chinese) [司夏萌, 刘云 2011 物理学报 60 78903]

    [11]

    Java A, Song X, Finin T, Tseng B 2007 Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Snalysis San Jose, USA, August 12, 2007 p56

    [12]

    Kwak H, Lee C, Park H, Moon S 2010 Proceedings of the 19th International Conference on World Wide web Raleigh, USA, April 26-30, 2010 p591

    [13]

    Wasserman S, Faust K 1994 Social Network Analysis: Methods and Applications (New York: Cambridge Univ. Press) p169

    [14]

    Koschôtzki D, Schreiber F 2004 Proceedings of the German Conference on Bioinformatics Bielefeld, Germany, October 4-6, 2004 p199

    [15]

    Guimerá R, Mossa S, Turtschi A, Amaral L A N 2005 Proc. Natl. Acad. Sci. USA 102 7794

    [16]

    Zheng X, Chen J P, Shao J L, Bie L D 2012 Acta Phys. Sin. 61 190510 (in Chinese) [郑啸, 陈建平, 邵佳丽, 别立东 2012 物理学报 61 190510]

    [17]

    Carmi S, Havlin S, Kirkpatrick S, Shavitt Y, Shir E 2007 Proc. Natl. Acad. Sci. USA 104 11150

    [18]

    Cai K Q, Zhang J, Du W B, Cao X B 2012 Chin. Phys. B 21 28903

    [19]

    Paolo C, Vito L, Sergio P 2006 Phys. Rev. E 73 036125

    [20]

    Wang L, Zhang Q Q 2006 Complex Systems and Complexity Science 3 13 (in Chinese) [王林, 张倩倩 2006 复杂系统与复杂性科学 3 13]

    [21]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [22]

    Borge-Holthoefer J, Moreno Y 2012 Phys. Rev. E 85 026116

    [23]

    Chen D B, Lü L Y, Shang M S, Zhang Y C, Zhou T 2012 Physica A 391 1777

    [24]

    Zhou X, Zhang F M, Li K W, Hui X B, Wu H S 2012 Acta Phys. Sin. 61 50201 (in Chinese) [周漩, 张凤鸣, 李克武, 惠晓滨, 吴虎胜 2012 物理学报 61 50201]

    [25]

    Holme P, Kim B J, Yoon C N, Han S K 2002 Phys. Rev. E 65 056109

    [26]

    Zhang Y C, Liu Y, Zhang H F, Cheng H, Xiong F 2011 Acta Phys. Sin. 60 50501 (in Chinese) [张彦超, 刘云, 张海峰, 程辉, 熊菲 2011 物理学报 60 50501]

    [27]

    Xiong X, Hu Y 2012 Acta Phys. Sin. 61 150509 (in Chinese) [熊熙, 胡勇 2012 物理学报 61 150509]

    [28]

    Alvarez-Hamelin J I, Dallásta L, Barrat A, Vespignani A 2006 Advances in Neural Information Processing Systems 18 (Cambridge: MIT Press) p41

计量
  • 文章访问数:  4154
  • PDF下载量:  3089
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-07
  • 修回日期:  2012-09-06
  • 刊出日期:  2013-02-05

微博双向关注网络节点中心性及传播 影响力的分析

  • 1. 北京交通大学, 通信与信息系统北京市重点实验室, 北京 100044;
  • 2. 中国科学院计算机网络信息中心, 北京 100190
    基金项目: 

    国家自然科学基金 (批准号: 61172072, 61271308)

    北京市自然科学基金(批准号: 11DA1454) 和中央高校基本科研业务费专项资金 (批准号: 2011YJS215) 资助的课题.

摘要: 根据新浪微博的实际数据, 建立了两个基于双向关注的用户关系网络, 通过分析网络拓扑统计特征, 发现二者均具有小世界、无标度特征. 通过对节点度、紧密度、介数和k-core 四个网络中心性指标进行实证分析, 发现节点度服从分段幂率分布; 介数相比其他中心性指标差异性最为显著; 两个网络均具有明显的层次性, 但不是所有度值大的节点核数也大; 全局范围内各中心性指标之间存在着较强的相关性, 但在度值较大的节点群这种相关性明显减弱. 此外, 借助基于传染病动力学的SIR信息传播模型来分析四种指标在刻画节点传播能力方面的差异性, 仿真结果表明, 选择具有不同中心性指标的初始传播节点, 对信息传播速度和范围均具有不同影响; 紧密度和k-core较其他指标可以更加准确地描述节点在信息传播中所处的网络核心位置, 这有助于识别信息传播拓扑网络中的关键节点.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回