搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

节点中心性对复杂网络传播模式的影响分析

苏臻 高超 李向华

引用本文:
Citation:

节点中心性对复杂网络传播模式的影响分析

苏臻, 高超, 李向华

Analysis of the effect of node centrality on diffusion mode in complex networks

Su Zhen, Gao Chao, Li Xiang-Hua
PDF
导出引用
  • 在众多的重要节点评估方法研究中,具有较高中心性的节点一直是关注的焦点,许多传播行为的研究也主要围绕高中心性节点展开,因此在一定程度上忽略了低中心性节点对传播行为的影响.本文从传播异构性角度,通过初始感染最大中心性节点和最小中心性节点揭示网络结构异构性对信息传播的影响.实验结果表明,传播过程中存在链型和扇型两种传播模式,在初始感染比例不断提升的情况下,两种传播模式的相互转换引发传播速率的变化,进一步促使非线性传播规模交叉现象的产生.这一现象说明,在宏观的信息传播过程中,最小中心性节点的影响力不容忽视,尤其在初始感染比例升高时,最小中心性节点比最大中心性节点更具传播优势.
    The centrality reflects the importance of a node in a complex network, which plays an important role in the propagation dynamics. Many researches in the field of node ranking estimation have revealed the characteristics of higher centrality in the structural dynamics and propagation dynamics. However, there are few reports about the effect of nodes with a relatively lower centrality on propagation process. In this paper, we focus on the effect of heterogeneous structural characteristics on propagation dynamics. First, we select four centrality measurements (i.e., degree, coreness, betweenness, and eigenvector) and initialize source nodes with the maximum and minimum centralities respectively. Then, based on the email propagation model and the SI model, the massive numbers of elaborate simulations are implemented in twelve scale-free networks. These networks include three networks generated by the Barabsi-Albert model, four synthetic networks compiled by the GLP (generalized linear preference) algorithm, and five benchmark networks. The simulation results contain two parts: one is the crossover phenomenon of two propagation processes, and the other is the correlation between the crossover point and the proportion of the initial source nodes. We present the crossover of two propagations by calculating the total infected nodes, the incremental infected nodes, and the average degree of the incremental infected nodes. The average degrees of the incremental infected nodes in both synthetic networks and benchmark networks show that there exist two kinds of diffusion modes (i.e., fan-shaped type and single-strand type). With the increase of the initial source nodes, the interaction between two modes results in the different dynamic changes of two propagations with respect to propagation speed, which may lead to the crossover of two propagations in terms of propagation scale in the propagation process. Specifically, the increase of the initial source nodes would suppress the propagation process in which nodes with the maximum centralities are portrayed as propagating sources. However, such an effect is not observed in the propagation process in which nodes with the minimum centralities are portrayed as propagating sources. Our further simulation indicates that the crossover points appear earlier as the proportion of the initial source nodes increases. And by employing the discrete-time method, we find that such a phenomenon can be triggered exactly by increasing the initial source nodes. This work reveals that the influence of the nodes with the minimum centralities should be taken into consideration because the initial infected nodes with a lower centrality will lead to a larger propagation scale if the initial proportion is high.
      通信作者: 高超, cgao@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61402379,61403315)、中央高校基本科研业务费专项资金(批准号:XDJK2016A008,XDJK2016B029)和重庆市科技研发基地建设计划(国际科技合作)项目(批注号:cstc2015gjhz40002)资助的课题.
      Corresponding author: Gao Chao, cgao@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61402379, 61403315), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. XDJK2016A008, XDJK2016B029), and the Chongqing Science and Technology R D Base Construction (International Science and Technology Cooperation) Project, China (Grant No. cstc2015gjhz40002).
    120201-20170048suppl.pdf

    S1 无标度网络(G2—G12)下传播规模交叉现象的仿真

    S2 无标度网络(G2—G12)下传播速率的变化

    S3 以人工网络(G4)和标准网络(G9)为例给出传播模式

    [1]

    Zhang H F, Zhang J, Zhou C S, Small M, Wang B H 2010 New J. Phys. 12 023015

    [2]

    Saito K, Kimura M, Ohara K, Motoda H 2016 Inform. Sci. 329 985

    [3]

    Fu C, Min L, Yang J, Xu D L, Liu X Y, Han L S 2015 Proceedings of IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing Liverpool, United Kingdom, October 26-28, 2015 p1725

    [4]

    Ren X L, L L Y 2014 Chin. Sci. Bull. 59 1175 (in Chinese) [任晓龙, 吕琳媛 2014 科学通报 59 1175]

    [5]

    Zhao J, Yu L, Li J R, Zhou P 2015 Chin. Phys. B 24 058904

    [6]

    Song B, Jiang G P, Song Y R, Xia L L 2015 Chin. Phys. B 24 100101

    [7]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901 (in Chinese) [刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901]

    [8]

    Freeman L C 1978 Soc. Networks 1 215

    [9]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [10]

    Liu Y Y, Slotine J J, Barabsi A L 2011 Nature 473 167

    [11]

    Borgatti S P 2005 Soc. Networks 27 55

    [12]

    Gao C, Liu J M, Zhong N 2011 Knowl. Inf. Syst. 27 253

    [13]

    Jiang J J, Wen S, Yu S, Xiang Y, Zhou W L 2016 IEEE Trans. Depend. Secure. pp 1

    [14]

    Zhang X Z, Zhang Y B, L T Y, Yin Y 2014 Physica A 442 100

    [15]

    Han X, Shen Z S, Wang W X, Di Z R 2015 Phys. Rev. Lett. 114 028701

    [16]

    Wang X F, Chen G R 2003 IEEE Circ. Syst. Mag. 3 6

    [17]

    Strogatz S H 2001 Nature 410 268

    [18]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [19]

    Barabsi A L, Albert R 1999 Science 286 509

    [20]

    Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (Beijing: Higher Education Press) pp270-275 (in Chinese) [汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高等教育出版社) 第270-275页]

    [21]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200

    [22]

    Barthlemy M, Barrat A, Pastor-Satorras R, Vespignani A 2004 Phys. Rev. Lett. 92 178701

    [23]

    Albert R, Barabsi A L 2002 Rev. Mod. Phys. 74 47

    [24]

    Goh K I, Kahng B, Kim D 2001 Phys. Rev. Lett. 87 278701

    [25]

    Estrada E, Rodrguez-Velzquez J A 2006 Physica A 364 581

    [26]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. E 63 066117

    [27]

    Bu T, Towsley D 2002 Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies New York, USA, June 23-27, 2002 p638

    [28]

    Stanford Network Analysis Project, Leskovec J https:// snap.stanford.edu/data/ca-GrQc.html [2017-4-18]

    [29]

    Stanford Network Analysis Project, Leskovec J https://snap.stanford.edu/data/ca-HepTh.html [2017-4-18]

    [30]

    Zou C C, Towsley D, Gong W 2007 IEEE Trans. Depend. Secure. 4 105

    [31]

    Bogu M, Pastor-Satorras R, Vespignani A 2003 Statistical Mechanics of Complex Networks (Berlin: Springer-Verlag) p127

  • [1]

    Zhang H F, Zhang J, Zhou C S, Small M, Wang B H 2010 New J. Phys. 12 023015

    [2]

    Saito K, Kimura M, Ohara K, Motoda H 2016 Inform. Sci. 329 985

    [3]

    Fu C, Min L, Yang J, Xu D L, Liu X Y, Han L S 2015 Proceedings of IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing Liverpool, United Kingdom, October 26-28, 2015 p1725

    [4]

    Ren X L, L L Y 2014 Chin. Sci. Bull. 59 1175 (in Chinese) [任晓龙, 吕琳媛 2014 科学通报 59 1175]

    [5]

    Zhao J, Yu L, Li J R, Zhou P 2015 Chin. Phys. B 24 058904

    [6]

    Song B, Jiang G P, Song Y R, Xia L L 2015 Chin. Phys. B 24 100101

    [7]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901 (in Chinese) [刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901]

    [8]

    Freeman L C 1978 Soc. Networks 1 215

    [9]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [10]

    Liu Y Y, Slotine J J, Barabsi A L 2011 Nature 473 167

    [11]

    Borgatti S P 2005 Soc. Networks 27 55

    [12]

    Gao C, Liu J M, Zhong N 2011 Knowl. Inf. Syst. 27 253

    [13]

    Jiang J J, Wen S, Yu S, Xiang Y, Zhou W L 2016 IEEE Trans. Depend. Secure. pp 1

    [14]

    Zhang X Z, Zhang Y B, L T Y, Yin Y 2014 Physica A 442 100

    [15]

    Han X, Shen Z S, Wang W X, Di Z R 2015 Phys. Rev. Lett. 114 028701

    [16]

    Wang X F, Chen G R 2003 IEEE Circ. Syst. Mag. 3 6

    [17]

    Strogatz S H 2001 Nature 410 268

    [18]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [19]

    Barabsi A L, Albert R 1999 Science 286 509

    [20]

    Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (Beijing: Higher Education Press) pp270-275 (in Chinese) [汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高等教育出版社) 第270-275页]

    [21]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200

    [22]

    Barthlemy M, Barrat A, Pastor-Satorras R, Vespignani A 2004 Phys. Rev. Lett. 92 178701

    [23]

    Albert R, Barabsi A L 2002 Rev. Mod. Phys. 74 47

    [24]

    Goh K I, Kahng B, Kim D 2001 Phys. Rev. Lett. 87 278701

    [25]

    Estrada E, Rodrguez-Velzquez J A 2006 Physica A 364 581

    [26]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. E 63 066117

    [27]

    Bu T, Towsley D 2002 Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies New York, USA, June 23-27, 2002 p638

    [28]

    Stanford Network Analysis Project, Leskovec J https:// snap.stanford.edu/data/ca-GrQc.html [2017-4-18]

    [29]

    Stanford Network Analysis Project, Leskovec J https://snap.stanford.edu/data/ca-HepTh.html [2017-4-18]

    [30]

    Zou C C, Towsley D, Gong W 2007 IEEE Trans. Depend. Secure. 4 105

    [31]

    Bogu M, Pastor-Satorras R, Vespignani A 2003 Statistical Mechanics of Complex Networks (Berlin: Springer-Verlag) p127

  • [1] 王凯莉, 邬春学, 艾均, 苏湛. 基于多阶邻居壳数的向量中心性度量方法. 物理学报, 2019, 68(19): 196402. doi: 10.7498/aps.68.20190662
    [2] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估. 物理学报, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [3] 阮逸润, 老松杨, 王竣德, 白亮, 侯绿林. 一种改进的基于信息传播率的复杂网络影响力评估算法. 物理学报, 2017, 66(20): 208901. doi: 10.7498/aps.66.208901
    [4] 韩忠明, 吴杨, 谭旭升, 段大高, 杨伟杰. 面向结构洞的复杂网络关键节点排序. 物理学报, 2015, 64(5): 058902. doi: 10.7498/aps.64.058902
    [5] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述. 物理学报, 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [6] 任卓明, 刘建国, 邵凤, 胡兆龙, 郭强. 复杂网络中最小K-核节点的传播能力分析. 物理学报, 2013, 62(10): 108902. doi: 10.7498/aps.62.108902
    [7] 刘金良. 具有随机节点结构的复杂网络同步研究. 物理学报, 2013, 62(4): 040503. doi: 10.7498/aps.62.040503
    [8] 苑卫国, 刘云, 程军军, 熊菲. 微博双向关注网络节点中心性及传播 影响力的分析. 物理学报, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [9] 高湘昀, 安海忠, 方伟. 基于复杂网络的时间序列双变量相关性波动研究. 物理学报, 2012, 61(9): 098902. doi: 10.7498/aps.61.098902
    [10] 吕翎, 柳爽, 张新, 朱佳博, 沈娜, 商锦玉. 节点结构互异的复杂网络的时空混沌反同步. 物理学报, 2012, 61(9): 090504. doi: 10.7498/aps.61.090504
    [11] 周漩, 张凤鸣, 周卫平, 邹伟, 杨帆. 利用节点效率评估复杂网络功能鲁棒性. 物理学报, 2012, 61(19): 190201. doi: 10.7498/aps.61.190201
    [12] 李泽荃, 张瑞新, 杨曌, 赵红泽, 于健浩. 复杂网络中心性对灾害蔓延的影响. 物理学报, 2012, 61(23): 238902. doi: 10.7498/aps.61.238902
    [13] 李树彬, 吴建军, 高自友, 林勇, 傅白白. 基于复杂网络的交通拥堵与传播动力学分析. 物理学报, 2011, 60(5): 050701. doi: 10.7498/aps.60.050701
    [14] 王亚奇, 蒋国平. 基于元胞自动机考虑传播延迟的复杂网络病毒传播研究. 物理学报, 2011, 60(8): 080510. doi: 10.7498/aps.60.080510
    [15] 崔爱香, 傅彦, 尚明生, 陈端兵, 周涛. 复杂网络局部结构的涌现:共同邻居驱动网络演化. 物理学报, 2011, 60(3): 038901. doi: 10.7498/aps.60.038901
    [16] 王亚奇, 蒋国平. 复杂网络中考虑不完全免疫的病毒传播研究. 物理学报, 2010, 59(10): 6734-6743. doi: 10.7498/aps.59.6734
    [17] 宋玉蓉, 蒋国平. 基于一维元胞自动机的复杂网络恶意软件传播研究. 物理学报, 2009, 58(9): 5911-5918. doi: 10.7498/aps.58.5911
    [18] 吕翎, 张超. 一类节点结构互异的复杂网络的混沌同步. 物理学报, 2009, 58(3): 1462-1466. doi: 10.7498/aps.58.1462
    [19] 倪顺江, 翁文国, 范维澄. 具有局部结构的增长无标度网络中传染病传播机制研究. 物理学报, 2009, 58(6): 3707-3713. doi: 10.7498/aps.58.3707
    [20] 许 丹, 李 翔, 汪小帆. 复杂网络病毒传播的局域控制研究. 物理学报, 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
  • 120201-20170048suppl.pdf

    S1 无标度网络(G2—G12)下传播规模交叉现象的仿真

    S2 无标度网络(G2—G12)下传播速率的变化

    S3 以人工网络(G4)和标准网络(G9)为例给出传播模式

计量
  • 文章访问数:  4154
  • PDF下载量:  498
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-08
  • 修回日期:  2017-03-11
  • 刊出日期:  2017-06-05

节点中心性对复杂网络传播模式的影响分析

  • 1. 西南大学计算机与信息科学学院, 重庆 400715
  • 通信作者: 高超, cgao@swu.edu.cn
    基金项目: 国家自然科学基金(批准号:61402379,61403315)、中央高校基本科研业务费专项资金(批准号:XDJK2016A008,XDJK2016B029)和重庆市科技研发基地建设计划(国际科技合作)项目(批注号:cstc2015gjhz40002)资助的课题.

摘要: 在众多的重要节点评估方法研究中,具有较高中心性的节点一直是关注的焦点,许多传播行为的研究也主要围绕高中心性节点展开,因此在一定程度上忽略了低中心性节点对传播行为的影响.本文从传播异构性角度,通过初始感染最大中心性节点和最小中心性节点揭示网络结构异构性对信息传播的影响.实验结果表明,传播过程中存在链型和扇型两种传播模式,在初始感染比例不断提升的情况下,两种传播模式的相互转换引发传播速率的变化,进一步促使非线性传播规模交叉现象的产生.这一现象说明,在宏观的信息传播过程中,最小中心性节点的影响力不容忽视,尤其在初始感染比例升高时,最小中心性节点比最大中心性节点更具传播优势.

English Abstract

参考文献 (31)
补充材料:
120201-20170048suppl.pdf

S1 无标度网络(G2—G12)下传播规模交叉现象的仿真

S2 无标度网络(G2—G12)下传播速率的变化

S3 以人工网络(G4)和标准网络(G9)为例给出传播模式

目录

    /

    返回文章
    返回