搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图卷积神经网络的多维度节点重要性评估方法

王博雅 杨小春 卢升荣 唐勇平 洪树权 蒋惠园

引用本文:
Citation:

基于图卷积神经网络的多维度节点重要性评估方法

王博雅, 杨小春, 卢升荣, 唐勇平, 洪树权, 蒋惠园
cstr: 32037.14.aps.73.20240937

A multidimensional node importance evaluation method based on graph convolutional networks

Wang Bo-Ya, Yang Xiao-Chun, Lu Sheng-Rong, Tang Yong-Ping, Hong Shu-Quan, Jiang Hui-Yuan
cstr: 32037.14.aps.73.20240937
PDF
HTML
导出引用
  • 针对复杂网络中关键节点的识别、评估及排序问题, 受物理系统中不同节点间信息的多维度、多层次相互影响过程的启发, 提出了一种基于图卷积神经网络的多维参数的节点重要性评估方法. 该方法结合了卷积神经网络自动学习的特性, 综合考虑节点的内在特性、与邻近节点的交互关系以及其在整个网络中的功能角色, 构建了一种新颖的关键节点识别框架, 即多维参数控制图卷积网络(multi-parameter control graph convolutional networks, MPC-GCN). 通过卷积神经网络对节点及其邻居特征的逐层聚合, 自动提取并综合节点的局部特性、全局特性及位置特性, 实现对节点重要性的多维度评估, 同时引入灵活的参数调整机制, 允许调整不同维度信息对评估结果的影响权重, 以适应不同结构网络的需求. 为验证该方法的有效性, 在随机生成的小型网络上验证了参数对模型的作用; 并在8个大型网络上利用SIR模型进行仿真实验, 以M(R)值、Kendall相关系数、被传染节点占比及最大连通子图相对大小作为评价标准. 结果表明, MPC-GCN方法在单调性、准确性、适用性及鲁棒性上都优于其他相关方法, 能够显著区分不同节点的重要程度. 该方法有效克服了现有方法在评估角度和适应能力上的局限性, 提高了评估的全面性和适用性.
    This paper deals with the problem of identifying, evaluating, and ranking key nodes in complex networks by introducing a novel multi-parameter control graph convolutional network (MPC-GCN) for assessing node importance. Drawing inspiration from the multidimensional and hierarchical interactions between nodes in physical systems, this method integrates the automatic feature learning capabilities of graph convolutional networks (GCNs) with a comprehensive analysis of intrinsic properties of nodes, their interactions with neighbors, and their roles in the broader network. The MPC-GCN model provides an innovative framework for identifying key node by using GCNs to iteratively aggregate node and neighbor features across layers. This process captures and combines local, global, and positional characteristics, enabling a more nuanced, multidimensional assessment of node importance. Moreover, the model also includes a flexible parameter adjustment mechanism that allows for adjusting the relative weights of different dimensions, thereby adapting the evaluation process to various network structures. To validate the effectiveness of the model, we first test the influence of model parameters on randomly generated small networks. We then conduct extensive simulations on eight large-scale networks by using the susceptible-infected-recovered (SIR) model. Evaluation metrics, including the M(R) score, Kendall’s tau correlation, the proportion of infected nodes, and the relative size of the largest connected component, are used to assess the model’s performance. The results demonstrate that MPC-GCN outperforms existing methods in terms of monotonicity, accuracy, applicability, and robustness, providing more precise differentiation of node importance. By addressing the limitations of current methods, such as their reliance on single-dimensional perspectives and lack of adaptability, the MPC-GCN provides a more comprehensive and flexible approach to node importance assessment. This method significantly improves the breadth and applicability of node ranking in complex networks.
      通信作者: 蒋惠园, jianghuiyuanpanh@163.com
    • 基金项目: 湖北省社会科学基金(批准号: HBSK2022YB411)和湖北省教育厅哲学社会科学基金(批准号: 22G082)资助的课题.
      Corresponding author: Jiang Hui-Yuan, jianghuiyuanpanh@163.com
    • Funds: Project supported by the Social Science Foundation General Programm of Hubei Province, China (Grant No. HBSK2022YB411) and the Philosophy and Social Sciences Research Programm of Hubei Provincial Department of Education, China (Grant No. 22G082).
    [1]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [2]

    Barabási A L, Albert R 1999 Science 286 509Google Scholar

    [3]

    许怡岚, 郭唐仪, 唐坤, 张滢颖, 李林蔚 2024 兵工学报 45 552Google Scholar

    Xu Y L, Guo T Y, Tang K, Zhang Y Y, Li L W 2024 Acta Armamentarii 45 552Google Scholar

    [4]

    孙利娜, 梁葆华, 陈志伟 2022 火力与指挥控制 47 119Google Scholar

    Sun L N, Liang B H, Chen Z W 2022 Fire Control Command Control 47 119Google Scholar

    [5]

    李晓龙, 韩益亮, 吴旭光, 张德阳 2018 燕山大学学报 42 444Google Scholar

    Li X L, Han Y L, Wu X G, Zhang D Y 2018 J. YanShan Univ. 42 444Google Scholar

    [6]

    罗浩, 闫光辉, 张萌, 包峻波, 李俊成, 刘婷, 杨波, 魏军 2020 计算机研究与发展 57 954Google Scholar

    Luo H, Yan G H, Zhang M, Bao J B, Li J C, Liu T, Yang B, Wei J 2020 J. Comp. Res. Develop. 57 954Google Scholar

    [7]

    Klemm K, Serrano M Á, Eguíluz V M, Miguel M S 2012 Scientific Reports 2 292Google Scholar

    [8]

    王灵丽, 黄敏, 高亮 2020 交通信息与安全 38 80Google Scholar

    Wang L L, Huang M, Gao L 2020 J. Transp. Inform. Safety 38 80Google Scholar

    [9]

    Lai Q, Zhang H H 2022 Chin. Phys. B 31 068905Google Scholar

    [10]

    Howell N 1985 Can. J. Sociol. 10 209Google Scholar

    [11]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [12]

    Sabidussi G 1966 Psychometrika 31 581Google Scholar

    [13]

    Zareie A, Sheikhahmadi A, Khamforoosh K 2018 Expert Syst. Appl. 108 96Google Scholar

    [14]

    Li H, Shang Q, Deng Y 2021 Chaos Soliton. Fract. 143 110456Google Scholar

    [15]

    Zareie A, Sheikhahmadi A 2018 Expert Syst. Appl. 93 200Google Scholar

    [16]

    Yu H, Liu Z, Li Y J 2013 Ieee 2013 5th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) Hong Kong, China, January 16–17, 2013 pp1292–1295

    [17]

    樊燕妮, 刘三阳, 白艺光 2020 数学的实践与认识 50 159

    Fan Y N, Liu S Y, Bai Y G 2020 Math. Pract. Theory 50 159

    [18]

    Ma L L, Ma C, Zhang H F, Wang B H 2016 Physica A 451 205Google Scholar

    [19]

    Jiang Y, Yang S Q, Yan Y W, Tong T C, Dai J Y 2022 Chin. Phys. B 31 058903Google Scholar

    [20]

    Yang X, Xiao F Y 2021 Knowl. Based Syst. 227 107198Google Scholar

    [21]

    Shang Q, Deng Y, Cheng K H 2021 Inform. Sci. 577 162Google Scholar

    [22]

    Ai D, Liu X L, Kang W Z, Li L N, Lü S Q, Liu Y 2023 Chin. Phys. B 32 118902Google Scholar

    [23]

    Ullah A, Wang B, Sheng J F, Long J, Khan N, Sun Z J 2021 Expert Syst. Appl. 186 115778Google Scholar

    [24]

    张宪立, 唐建新 2021 计算机工程 47 139Google Scholar

    Zhang X L, Tang J X 2021 Comp. Eng. 47 139Google Scholar

    [25]

    阮逸润, 老松杨, 汤俊, 白亮, 郭延明 2022 物理学报 71 176401Google Scholar

    Ruan Y R, Lao S Y, Tang J, Bai L, Guo Y M 2022 Acta Phys. Sin. 71 176401Google Scholar

    [26]

    Xu K, Hu W, Leskovec J, Jegelka S 2018 Leskovec Proc 7th International Conference on Learning Representations (ICLR) LA, USA, May 6–9, 2019 pp1467–5463

    [27]

    曹璐, 丁苍峰, 马乐荣, 延照耀, 游浩, 洪安琪 2024 计算机科学与探索

    Cao L, Ding C F, Ma L R, Yan Z Y, You H, Hong A Q 2024 Journal of Frontiers of Computer Science and Technology

    [28]

    Kipf T N, Welling M 2017 5th International Conference on Learning Representations Toulon, France, April 24–26, 2017

    [29]

    Maurya S K, Liu X, Murata T 2021 ACM Trans Knowl Discov Data. 15 1Google Scholar

    [30]

    Qin P, Chen W F, Zhang M, Li D F, Feng G C 2024 IEEE Access 12 71956Google Scholar

    [31]

    Goel D, Shen H, Tian H, Guo M Y 2024 Expert Syst. Appl. 249 123636Google Scholar

    [32]

    Qu H B, Song Y R, Li R Q, Li M 2023 Physica A 632 129339Google Scholar

    [33]

    Ramachandran K, Rj T 2022 ICSEE 2022 Total Centrality: A New Centrality Measure Using Graph Neural Network Hobart, Australia, February 18–20, 2022

    [34]

    Sun C C, Li C H, Lim X, Zheng T J, Meng F R, Rui X B, Wan Z X 2023 Artif. Intell. Rev. 56 2263Google Scholar

    [35]

    Xiong C, Li W, Liu Y, Wang M H 2021 IEEE Signal Proc. Lett. 28 573Google Scholar

    [36]

    Li Z, Xing Y Y, Huang J M, Wang H B, Gao J L, Yu G X 2021 Future Gener. Comp. Syst. 116 145Google Scholar

    [37]

    Zhao G H, Jia P, Zhou A M, Zhang B 2020 Neurocomputing 414 18Google Scholar

    [38]

    Liu C, Cao T T, Zhou L X 2022 Knowl. Based Syst. 251 109220Google Scholar

    [39]

    Chen W J, Feng F L, Wang Q F, He X N, Song C G, Ling G H, Zhang Y D 2023 IEEE T. Knowl. Data En. 35 3500Google Scholar

    [40]

    Li W J, Li T, Nikougoftar E 2024 Chaos Soliton. Fract. 187 115388Google Scholar

    [41]

    Yu E Y, Wang Y P, Fu Y, Chen D B, Xie M 2020 Knowl. Based Syst. 198 105893Google Scholar

    [42]

    Zhang L, Song H D, Aletras N, Lu H P 2022 Pattern Recogn. 128 108661Google Scholar

    [43]

    Han B, Wei Y, Kang L, Wang Q, Yang Y 2022 Front. Phys. 9 2296Google Scholar

    [44]

    Zhu S Q, Zhan J, Li X 2023 Sci. Rep. 13 16404Google Scholar

    [45]

    杨松青, 蒋沅, 童天驰, 严玉为, 淦各升 2021 物理学报 70 216401Google Scholar

    Yang S Q, Jiang Y, Tong T C, Yan Y W, Gan G S 2021 Acta Phys. Sin. 70 216401Google Scholar

  • 图 1  随机生成的网络G12

    Fig. 1.  Randomly generated networks G12.

    图 2  随机森林模型评估MPC-GCN模型效果 (a)回归散点图; (b)特征重要性图

    Fig. 2.  Random forest model evaluation of MPC-GCN model performance: (a) Regression scatter plot; (b) feature importance plot.

    图 4  8种节点排序性方法在8个网络上的Kendall相关系数对比 (a) Karate; (b) Jazz; (c) NS; (d) USAir; (e) PB; (f) Route; (g) G300; (h) G10010

    Fig. 4.  Comparison of Kendall’s Tau coefficient for 8 node ranking methods on 8 networks: (a) Karate; (b) Jazz; (c) NS; (d) USAir; (e) PB; (f) Route; (g) G300; (h) G10010.

    图 6  网络最大连通子图随移除节点比例变化情况 (a) Karate; (b) Jazz; (c) NS; (d) USAir; (e) PB; (f) Route; (g) G300; (h) G10010

    Fig. 6.  Variation of the network’s largest connected component with the proportion of removed nodes: (a) Karate; (b) Jazz; (c) NS; (d) USAir; (e) PB; (f) Route; (g) G300; (h) G10010.

    图 3  不同评估方法在8个网络上的单调性指标M

    Fig. 3.  Monotonicity metrics M of various assessment methods on 8 networks.

    图 5  以前5%为初始感染节点的8种节点排序性方法在8个网络上的传染情况对比 (a) Karate; (b) Jazz; (c) NS; (d) USAir; (e) PB; (f) Route; (g) G300; (h) G10010

    Fig. 5.  Comparison of infection dynamics among 8 node ranking methods initiated with the top 5% nodes as infections on 8 networks: (a) Karate; (b) Jazz; (c) NS; (d) USAir; (e) PB; (f) Route; (g) G300; (h) G10010.

    表 2  8个网络参数描述

    Table 2.  Parameters description of 8 networks.

    网络VE$ \left\langle k \right\rangle $$ {k_{\max }} $$ \left\langle d \right\rangle $$ {d_{\max }} $$ {\mu _{{\text{th}}}} $DC
    Karate33546.5455221.992440.11340.140.57
    Jazz198274227.69701002.235060.02660.140.62
    NS3799144.8232346.0419170.09640.0130.74
    USAir332212612.80721392.738160.02430.0390.63
    PB12221671427.35523512.737580.01250.0220.32
    Router502262582.491066.4488150.05830.000500.012
    G300300221814.79272.4140.0690.0500.050
    G1001010010198913.971317.321090.2510.000400.00023
    下载: 导出CSV

    表 1  SIR模型与8种节点重要性方法的排序结果及Kendall相关系数对比

    Table 1.  Comparison of SIR model rankings and Kendall’s tau coefficients with 8 node importance methods.

    名称 SIR DC BC OGC KSGC LGIC EDGM HVGC MPC-GCN
    排序结果 7 7 6 7 7 7 7 7 7
    1 9 9 1 9 1 1 9 1
    6 1 7 6 1 6 6 1 6
    2 6 5 2 6 2 2 6 2
    5 5 1 5 5 5 5 5 5
    4 2 2 9 2 9 9 2 4
    9 4 12 4 4 4 4 4 9
    3 12 11 3 3 3 3 3 3
    8 11 10 8 8 12 12 8 8
    11 10 8 12 12 11 11 12 10
    10 8 4 11 11 10 10 11 12
    12 3 3 10 10 8 8 10 11
    τ –0.606 –0.0303 0.667 0.333 0.576 0.576 0.333 0.939
    下载: 导出CSV

    表 3  8个网络幂律及泊松分布拟合检验结果

    Table 3.  Fitting test results of power law and Poisson distributions for 8 networks.

    网络 δ 拟合优度检验 P 值 <0.05 λ 拟合优度检验 P 值 <0.05
    Karate 0.55 0.29 4.59 6.28×102
    Jazz 0.27 0.15 27.70 2.89×1023
    NS 1.55 0.76 4.82 5.61×1014
    USAir 0.95 0.77 12.81 1.22×108
    PB 1.07 0.85 27.36 1.07×10247
    Router 1.77 0.89 2.49 2.31×10125
    G300 0.79 0.073 14.79 14.51
    G10010 0.24 0.054 4.04 29.6
    下载: 导出CSV
  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [2]

    Barabási A L, Albert R 1999 Science 286 509Google Scholar

    [3]

    许怡岚, 郭唐仪, 唐坤, 张滢颖, 李林蔚 2024 兵工学报 45 552Google Scholar

    Xu Y L, Guo T Y, Tang K, Zhang Y Y, Li L W 2024 Acta Armamentarii 45 552Google Scholar

    [4]

    孙利娜, 梁葆华, 陈志伟 2022 火力与指挥控制 47 119Google Scholar

    Sun L N, Liang B H, Chen Z W 2022 Fire Control Command Control 47 119Google Scholar

    [5]

    李晓龙, 韩益亮, 吴旭光, 张德阳 2018 燕山大学学报 42 444Google Scholar

    Li X L, Han Y L, Wu X G, Zhang D Y 2018 J. YanShan Univ. 42 444Google Scholar

    [6]

    罗浩, 闫光辉, 张萌, 包峻波, 李俊成, 刘婷, 杨波, 魏军 2020 计算机研究与发展 57 954Google Scholar

    Luo H, Yan G H, Zhang M, Bao J B, Li J C, Liu T, Yang B, Wei J 2020 J. Comp. Res. Develop. 57 954Google Scholar

    [7]

    Klemm K, Serrano M Á, Eguíluz V M, Miguel M S 2012 Scientific Reports 2 292Google Scholar

    [8]

    王灵丽, 黄敏, 高亮 2020 交通信息与安全 38 80Google Scholar

    Wang L L, Huang M, Gao L 2020 J. Transp. Inform. Safety 38 80Google Scholar

    [9]

    Lai Q, Zhang H H 2022 Chin. Phys. B 31 068905Google Scholar

    [10]

    Howell N 1985 Can. J. Sociol. 10 209Google Scholar

    [11]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [12]

    Sabidussi G 1966 Psychometrika 31 581Google Scholar

    [13]

    Zareie A, Sheikhahmadi A, Khamforoosh K 2018 Expert Syst. Appl. 108 96Google Scholar

    [14]

    Li H, Shang Q, Deng Y 2021 Chaos Soliton. Fract. 143 110456Google Scholar

    [15]

    Zareie A, Sheikhahmadi A 2018 Expert Syst. Appl. 93 200Google Scholar

    [16]

    Yu H, Liu Z, Li Y J 2013 Ieee 2013 5th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) Hong Kong, China, January 16–17, 2013 pp1292–1295

    [17]

    樊燕妮, 刘三阳, 白艺光 2020 数学的实践与认识 50 159

    Fan Y N, Liu S Y, Bai Y G 2020 Math. Pract. Theory 50 159

    [18]

    Ma L L, Ma C, Zhang H F, Wang B H 2016 Physica A 451 205Google Scholar

    [19]

    Jiang Y, Yang S Q, Yan Y W, Tong T C, Dai J Y 2022 Chin. Phys. B 31 058903Google Scholar

    [20]

    Yang X, Xiao F Y 2021 Knowl. Based Syst. 227 107198Google Scholar

    [21]

    Shang Q, Deng Y, Cheng K H 2021 Inform. Sci. 577 162Google Scholar

    [22]

    Ai D, Liu X L, Kang W Z, Li L N, Lü S Q, Liu Y 2023 Chin. Phys. B 32 118902Google Scholar

    [23]

    Ullah A, Wang B, Sheng J F, Long J, Khan N, Sun Z J 2021 Expert Syst. Appl. 186 115778Google Scholar

    [24]

    张宪立, 唐建新 2021 计算机工程 47 139Google Scholar

    Zhang X L, Tang J X 2021 Comp. Eng. 47 139Google Scholar

    [25]

    阮逸润, 老松杨, 汤俊, 白亮, 郭延明 2022 物理学报 71 176401Google Scholar

    Ruan Y R, Lao S Y, Tang J, Bai L, Guo Y M 2022 Acta Phys. Sin. 71 176401Google Scholar

    [26]

    Xu K, Hu W, Leskovec J, Jegelka S 2018 Leskovec Proc 7th International Conference on Learning Representations (ICLR) LA, USA, May 6–9, 2019 pp1467–5463

    [27]

    曹璐, 丁苍峰, 马乐荣, 延照耀, 游浩, 洪安琪 2024 计算机科学与探索

    Cao L, Ding C F, Ma L R, Yan Z Y, You H, Hong A Q 2024 Journal of Frontiers of Computer Science and Technology

    [28]

    Kipf T N, Welling M 2017 5th International Conference on Learning Representations Toulon, France, April 24–26, 2017

    [29]

    Maurya S K, Liu X, Murata T 2021 ACM Trans Knowl Discov Data. 15 1Google Scholar

    [30]

    Qin P, Chen W F, Zhang M, Li D F, Feng G C 2024 IEEE Access 12 71956Google Scholar

    [31]

    Goel D, Shen H, Tian H, Guo M Y 2024 Expert Syst. Appl. 249 123636Google Scholar

    [32]

    Qu H B, Song Y R, Li R Q, Li M 2023 Physica A 632 129339Google Scholar

    [33]

    Ramachandran K, Rj T 2022 ICSEE 2022 Total Centrality: A New Centrality Measure Using Graph Neural Network Hobart, Australia, February 18–20, 2022

    [34]

    Sun C C, Li C H, Lim X, Zheng T J, Meng F R, Rui X B, Wan Z X 2023 Artif. Intell. Rev. 56 2263Google Scholar

    [35]

    Xiong C, Li W, Liu Y, Wang M H 2021 IEEE Signal Proc. Lett. 28 573Google Scholar

    [36]

    Li Z, Xing Y Y, Huang J M, Wang H B, Gao J L, Yu G X 2021 Future Gener. Comp. Syst. 116 145Google Scholar

    [37]

    Zhao G H, Jia P, Zhou A M, Zhang B 2020 Neurocomputing 414 18Google Scholar

    [38]

    Liu C, Cao T T, Zhou L X 2022 Knowl. Based Syst. 251 109220Google Scholar

    [39]

    Chen W J, Feng F L, Wang Q F, He X N, Song C G, Ling G H, Zhang Y D 2023 IEEE T. Knowl. Data En. 35 3500Google Scholar

    [40]

    Li W J, Li T, Nikougoftar E 2024 Chaos Soliton. Fract. 187 115388Google Scholar

    [41]

    Yu E Y, Wang Y P, Fu Y, Chen D B, Xie M 2020 Knowl. Based Syst. 198 105893Google Scholar

    [42]

    Zhang L, Song H D, Aletras N, Lu H P 2022 Pattern Recogn. 128 108661Google Scholar

    [43]

    Han B, Wei Y, Kang L, Wang Q, Yang Y 2022 Front. Phys. 9 2296Google Scholar

    [44]

    Zhu S Q, Zhan J, Li X 2023 Sci. Rep. 13 16404Google Scholar

    [45]

    杨松青, 蒋沅, 童天驰, 严玉为, 淦各升 2021 物理学报 70 216401Google Scholar

    Yang S Q, Jiang Y, Tong T C, Yan Y W, Gan G S 2021 Acta Phys. Sin. 70 216401Google Scholar

  • [1] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 物理学报, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [2] 汪亭亭, 梁宗文, 张若曦. 基于信息熵与迭代因子的复杂网络节点重要性评价方法. 物理学报, 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [3] 阮逸润, 老松杨, 汤俊, 白亮, 郭延明. 基于引力方法的复杂网络节点重要度评估方法. 物理学报, 2022, 71(17): 176401. doi: 10.7498/aps.71.20220565
    [4] 黄颖, 顾长贵, 杨会杰. 神经网络超参数优化的删除垃圾神经元策略. 物理学报, 2022, 71(16): 160501. doi: 10.7498/aps.71.20220436
    [5] 朱琦, 许多, 张元军, 李玉娟, 王文, 张海燕. 基于卷积神经网络的白蚀缺陷超声探测. 物理学报, 2022, 71(24): 244301. doi: 10.7498/aps.71.20221504
    [6] 刘慧, 王炳珺, 陆君安, 李增扬. 复杂网络牵制控制优化选点算法及节点组重要性排序. 物理学报, 2021, 70(5): 056401. doi: 10.7498/aps.70.20200872
    [7] 杨松青, 蒋沅, 童天驰, 严玉为, 淦各升. 基于Tsallis熵的复杂网络节点重要性评估方法. 物理学报, 2021, 70(21): 216401. doi: 10.7498/aps.70.20210979
    [8] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元. 基于深度卷积神经网络的大气湍流相位提取. 物理学报, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [9] 彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜. 基于人工神经网络在线学习方法优化磁屏蔽特性参数. 物理学报, 2019, 68(13): 130701. doi: 10.7498/aps.68.20190234
    [10] 黄丽亚, 汤平川, 霍宥良, 郑义, 成谢锋. 基于加权K-阶传播数的节点重要性. 物理学报, 2019, 68(12): 128901. doi: 10.7498/aps.68.20190087
    [11] 杨剑楠, 刘建国, 郭强. 基于层间相似性的时序网络节点重要性研究. 物理学报, 2018, 67(4): 048901. doi: 10.7498/aps.67.20172255
    [12] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估. 物理学报, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [13] 阮逸润, 老松杨, 王竣德, 白亮, 陈立栋. 基于领域相似度的复杂网络节点重要度评估算法. 物理学报, 2017, 66(3): 038902. doi: 10.7498/aps.66.038902
    [14] 王雨, 郭进利. 基于多重影响力矩阵的有向加权网络节点重要性评估方法. 物理学报, 2017, 66(5): 050201. doi: 10.7498/aps.66.050201
    [15] 任卓明, 邵凤, 刘建国, 郭强, 汪秉宏. 基于度与集聚系数的网络节点重要性度量方法研究. 物理学报, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [16] 刘建国, 任卓明, 郭强, 汪秉宏. 复杂网络中节点重要性排序的研究进展. 物理学报, 2013, 62(17): 178901. doi: 10.7498/aps.62.178901
    [17] 于会, 刘尊, 李勇军. 基于多属性决策的复杂网络节点重要性综合评价方法. 物理学报, 2013, 62(2): 020204. doi: 10.7498/aps.62.020204
    [18] 周漩, 张凤鸣, 李克武, 惠晓滨, 吴虎胜. 利用重要度评价矩阵确定复杂网络关键节点. 物理学报, 2012, 61(5): 050201. doi: 10.7498/aps.61.050201
    [19] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究. 物理学报, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [20] 彭桓武. 寿命关联实验的重要性. 物理学报, 1962, 18(3): 165-166. doi: 10.7498/aps.18.165
计量
  • 文章访问数:  985
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-06
  • 修回日期:  2024-10-02
  • 上网日期:  2024-10-18
  • 刊出日期:  2024-11-20

/

返回文章
返回