搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卷积神经网络辅助无机晶体弹性性质预测

刘宇杰 王振宇 雷航 张国宇 咸家伟 高志斌 孙军 宋海峰 丁向东

引用本文:
Citation:

卷积神经网络辅助无机晶体弹性性质预测

刘宇杰, 王振宇, 雷航, 张国宇, 咸家伟, 高志斌, 孙军, 宋海峰, 丁向东

Machine Learning-Driven Elasticity Prediction in Advanced Inorganic Materials via Convolutional Neural Networks

LIU Yujie, WANG Zhenyu, LEI Hang, ZHANG Guoyu, XIAN Jiawei, GAO Zhibin, SUN Jun, SONG Haifeng, DING Xiangdong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 无机晶体材料因其优异的物理和化学特性,在多个领域展现出广泛的应用潜力。弹性性质(如体积模量和剪切模量)对预测材料的电导率、热导率及力学性能具有重要作用,然而,传统实验测量方法存在成本高、周期长等问题。随着计算方法的进步,理论模拟逐渐成为独立于实验的研究方法。近年来,基于图神经网络的机器学习方法在无机晶体材料的弹性性质预测中取得了显著成果,尤其是晶体图卷积神经网络(CGCNN)在材料数据的预测和扩展方面表现出色。本研究利用从Matbench v0.1数据集中收集的10,987个材料的体积模量和剪切模量数据,训练了两个CGCNN模型,基于预训练的模型成功实现了对80,664个无机晶体结构弹性模量的预测。为保证数据质量,筛选了材料电子带隙在0.1至3.0 eV之间,并去除了含有放射性元素的化合物。预测数据来源于两个主要数据集:一是从Materials Project数据库中筛选出的54,359个晶体结构,构成MPED弹性数据集;二是Merchant等通过深度学习和图神经网络方法发现的26,305种晶体结构,构成NED弹性数据集。最终,本研究预测了80,664种无机晶体的体积模量和剪切模量,丰富了现有的材料弹性数据资源,并为材料设计提供了更多的数据支持。本文数据集可在科学数据银行中访问获取https://doi.org/10.57760/sciencedb.j00213.00104。
    Due to their excellent physical and chemical properties, inorganic crystal materials have shown extensive application potential in many fields. Elastic properties such as shear modulus and bulk modulus play an important role in predicting the electrical conductivity, thermal conductivity and mechanical properties of materials. However, the traditional experimental measurement method has some problems such as high cost and low effciency. With the development of computational methods, theoretical simulation has gradually become an effective alternative to experiments. In recent years, graph neural networkbased machine learning methods have achieved remarkable results in the prediction of elastic properties of inorganic crystal materials, especially crystal graph convolutional neural networks (CGCNN), which perform well in the prediction and expansion of material data. In this study, two CGCNN models were trained using the shear modulus and bulk modulus data of 10,987 materials collected in the Matbench v0.1 dataset. These models show high accuracy and good generalization ability in predicting shear modulus and bulk modulus. The mean absolute error (MAE) is less than 13 and the coeffcient of determination (R2) is close to 1.We then screened two datasets with a band gap between 0.1 and 3.0 eV and excluded compounds containing radioactive elements. The dataset consists of two parts: The first part is composed of 54,359 crystal structures selected from the Materials Project database, which constitutes the MPED dataset; The second part is the 26,305 crystal structures discovered by Merchant et al. (Nature 624 , 80 (2023) through deep learning and graph neural network methods, which constitute the NED dataset. Finally, the shear modulus and bulk modulus of 80,664 inorganic crystals are predicted in this study, which enriches the existing material elastic data resources and provides more data support for material design. This dataset is publicly available and can be accessed via the Science Data Bank at https://doi.org/10.57760/sciencedb.j00213.00104.
  • [1]

    Koester S J, Schaub J D, Dehlinger G, Chu J O 2006 Ieee. J. Sel. Top. Quant. 121489

    [2]

    Seo D, Gregory J, Feldman L, Tolk N, Cohen P 2011 Phys. Rev. B 83195203

    [3]

    Parola S, Julián-López B, Carlos L D, Sanchez C 2016 Adv. Funct. Mater. 266506

    [4]

    Sanchez C, Lebeau B, Chaput F, Boilot J P 2003 Adv. Mater. 151969

    [5]

    Beekman M, Cahill D G 2017 Cryst. Res. Technol. 521700114

    [6]

    Tan J C, Cheetham A K 2011 Chem. Soc. Rev. 401059

    [7]

    Reddy C M, Krishna G R, Ghosh S 2010 CrystEngComm 122296

    [8]

    Wang X, Shu G, Zhu G, Wang J S, Sun J, Ding X, Li B, Gao Z 2024 Mater. Today Phys. 48101549

    [9]

    Chen L, Tran H, Batra R, Kim C, Ramprasad R 2019 Comput. Mater. Sci. 170109155

    [10]

    Lake G J, Thomas A G 1967 Proc. R. Soc. Lond. A Math. Phys. Sci. 300108

    [11]

    Pugh S 1954 Philos. Mag. J. Sci. 45823

    [12]

    Niu H, Chen X Q, Liu P, Xing W, Cheng X, Li D, Li Y 2012 Sci. Rep. 2718

    [13]

    Gschneidner Jr K, Russell A, Pecharsky A, Morris J, Zhang Z, Lograsso T, Hsu D, Chester Lo C, Ye Y, Slager A, et al. 2003 Nat. Mater. 2587

    [14]

    Greaves G N, Greer A L, Lakes R S, Rouxel T 2011 Nat. Mater. 10823

    [15]

    de Jong M, Olmsted D L, van de Walle A, Asta M 2012 Phys. Rev. B 86224101

    [16]

    de Jong M, van der Zwaag S, Sluiter M 2012 Int. J. Mater. Res. 103972

    [17]

    Xie T, Grossman J C 2018 Phys. Rev. Lett. 120145301

    [18]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos a J 1992 Rev. Mod. Phys. 641045

    [19]

    Wang J, Yang X, Zeng Z, Zhang X, Zhao X, Wang Z 2017 Comput. Mater. Sci. 138135

    [20]

    Plimpton S 1995 J. Comput. Phys. 1171

    [21]

    Grigoras S, Gusev A, Santos S, Suter U 2002 Polymer 43489

    [22]

    Belytschko T, Black T 1999 Int. J. Numer. Methods Eng. 45601

    [23]

    Tian Z, Zhang S, Chern G W 2023 Phys. Rev. E 108065304

    [24]

    Zhao Y, Yuan K, Liu Y, Louis S Y, Hu M, Hu J 2020 J. Phys. Chem. C 12417262

    [25]

    Chibani S, Coudert F X 2020 Apl. Mater. 8080701

    [26]

    Chew A K, Sender M, Kaplan Z, Chandrasekaran A, Chief Elk J, Browning A R, Kwak H S, Halls M D, Afzal M A F 2024 J. Cheminformatics 1631

    [27]

    Karamad M, Magar R, Shi Y, Siahrostami S, Gates I D, Barati Farimani A 2020 Phys. Rev. Mater. 4093801

    [28]

    Choudhary K, DeCost B 2021 npj Comput. Mater. 7185

    [29]

    Louis S Y, Zhao Y, Nasiri A, Wang X, Song Y, Liu F, Hu J 2020 Phys. Chem. Chem. Phys. 2218141

    [30]

    Ruff R, Reiser P, Stühmer J, Friederich P 2024 Digit. Discov. 3594

    [31]

    Omee S S, Fu N, Dong R, Hu M, Hu J 2024 npj Comput. Mater. 10144

    [32]

    de Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A, Sluiter M, Ande C K, van der Zwaag S, Plata J J, Toher C, Curtarolo S, Ceder G, Persson K A, Asta M 2015 Sci. Data 2150009

    [33]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, et al. 2013 APL Mater. 1011002

    [34]

    Curtarolo S, Setyawan W, Hart G L, Jahnatek M, Chepulskii R V, Taylor R H, Wang S, Xue J, Yang K, Levy O, et al. 2012 Comput. Mater. Sci. 58218

    [35]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 JOM 651501

    [36]

    Gong X, Li R, Xiao R, Zhang T, Li H 2025 Chin.Phys.B 34016101

    [37]

    Atomly https://atomly.net/

    [38]

    Jiang Y, Yu Z, Wang Y, Lu T, Meng S, Jiang K, Liu M 2022 Chin. Phys. Lett. 39047402

    [39]

    Dunn A, Wang Q, Ganose A, Dopp D, Jain A 2020 npj Comput. Mater. 6138

    [40]

    Merchant A, Batzner S, Schoenholz S S, Aykol M, Cheon G, Cubuk E D 2023 Nature 62480

    [41]

    Shuai C, Liu W, Li H, Wang K, Zhang Y, Xie T, Chen L, Hou H, Zhao Y 2023 Int. J. Plast. 170103772

    [42]

    Jia T, Chen G, Zhang Y 2017 Phys. Rev. B 95155206

    [43]

    Qin G, Huang A, Liu Y, Wang H, Qin Z, Jiang X, Zhao J, Hu J, Hu M 2022 Mater. Adv. 36826

    [44]

    Belomestnykh V N, Tesleva E P 2004 Tech. Phys. 491098

    [45]

    Belomestnykh V N 2004 Tech. Phys. Lett. 3091

    [46]

    Toher C, Oses C, Plata J J, Hicks D, Rose F, Levy O, de Jong M, Asta M, Fornari M, Buongiorno Nardelli M, Curtarolo S 2017 Phys. Rev. Mater. 1015401

    [47]

    Wang H, Duan Z, Guo Q, Zhang Y, Zhao Y 2023 Comput. Mater. Contin. 771393

  • [1] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别. 物理学报, doi: 10.7498/aps.74.20241458
    [2] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为. 物理学报, doi: 10.7498/aps.74.20241581
    [3] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学. 物理学报, doi: 10.7498/aps.74.20240999
    [4] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, doi: 10.7498/aps.73.20240747
    [5] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [6] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, doi: 10.7498/aps.73.20241278
    [7] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, doi: 10.7498/aps.72.20230896
    [8] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, doi: 10.7498/aps.72.20230334
    [9] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, doi: 10.7498/aps.72.20231624
    [10] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, doi: 10.7498/aps.71.20211632
    [11] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, doi: 10.7498/aps.71.20211625
    [12] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, doi: 10.7498/aps.70.20210831
    [13] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, doi: 10.7498/aps.70.20210879
    [14] 张博凯. 胶体聚合物弹性模量的微观理论: 键长的效应. 物理学报, doi: 10.7498/aps.70.20210128
    [15] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, doi: 10.7498/aps.68.20190942
    [16] 张朝民, 江勇, 尹登峰, 陶辉锦, 孙顺平, 姚建刚. 点缺陷浓度对非化学计量比L12型结构的A13Sc弹性性能的影响. 物理学报, doi: 10.7498/aps.65.076101
    [17] 张维然, 李英姿, 王曦, 王伟, 钱建强. 原子力显微镜高次谐波幅度对样品弹性性质表征的研究. 物理学报, doi: 10.7498/aps.62.140704
    [18] 张正罡, 他得安. 基于弹性模量检测骨疲劳的超声导波方法研究. 物理学报, doi: 10.7498/aps.61.134304
    [19] 宋云飞, 于国洋, 殷合栋, 张明福, 刘玉强, 杨延强. 激光超声技术测量高温下蓝宝石单晶的弹性模量. 物理学报, doi: 10.7498/aps.61.064211
    [20] 倪向贵, 殷建伟. 拉伸条件下双壁碳纳米管弹性性能的原子模拟. 物理学报, doi: 10.7498/aps.55.6522
计量
  • 文章访问数:  207
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-10

/

返回文章
返回