搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器学习模型预测稀土化合物的热力学稳定性

秦成龙 赵亮 蒋刚

引用本文:
Citation:

机器学习模型预测稀土化合物的热力学稳定性

秦成龙, 赵亮, 蒋刚

Prediction of thermodynamic stability of rare earth compounds by machine learning model

Qin Cheng-Long, Zhao Liang, Jiang Gang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 热力学稳定性在先进材料设计中占据核心地位,其决定了材料在服役条件下的结构完整性与性能持续性.本研究利用由280569个密度泛函理论(DFT)计算得到的能量数据集,采用随机森林(RF)和神经网络(NN)两种机器学习(ML)模型来预测稀土化合物的热力学相稳定性.研究使用了一系列不包含结构信息的综合特征描述符,使其适用于由任意数量元素构成的材料.经5折交叉验证测试,两种模型在分类和回归任务中均展现出卓越性能.它们不仅能够精准地将化合物划分为稳定或不稳定类别,还能精确预测化合物的形成能.此外,我们利用训练完成的模型,对稀土化合物La-Al和Ce-H的二元相图进行了预测。考虑到单一模型在预测某些化合物时可能存在局限性,为提升模型的鲁棒性,我们采用了一种集成学习策略.通过协同组合RF和NN模型的预测结果,集成学习方法在准确预测稀土化合物相图方面表现出色,成功捕捉到了多个数据库中没有的亚稳相.
    The research aims to predict the thermodynamic stability of rare-earth compounds using machine learning (ML) models, providing crucial data support for advanced materials design and facilitating the discovery of new rare-earth compounds.

    In terms of methods, this study is based on a dataset consisting of 280,569 compounds. The formation energies of these compounds were obtained through density functional theory (DFT) calculations. A system of 145 feature descriptors was constructed, covering stoichiometric properties, statistical properties of elements, electronic structure properties, and properties of ionic compounds, to comprehensively describe the characteristics of rare-earth compounds. Two ML models, random forest (RF) and neural network (NN), were selected to perform classification and regression tasks respectively. The 5-fold cross-validation was used to improve the reliability of the models. The min-max scaling technique was applied for data preprocessing, and an ensemble learning architecture was constructed to address the limitations of single model.

    In the classification task, the RF and NN algorithms performed remarkably well. With 5-fold cross-validation, the accuracy reached approximately 0.97, and the F1 score was around 0.98, enabling the precise classification of compounds into stable or unstable categories. In the regression task, the mean absolute errors (MAE) of the formation energy predictions by the RF and NN models were 0.055 eV/atom and 0.071 eV/atom, respectively. This indicates that the model predictions are highly accurate and can, to a certain extent, replace complete DFT calculations. In the prediction analysis of systems outside the test set, six representative components were selected from the Materials Project database, covering binary, ternary, and quaternary systems. The prediction errors of all compositions were controlled within 0.5 eV/atom, and the error percentages were lower than 25%, demonstrating the strong extrapolation prediction ability of the models. When predicting the binary phase diagrams of rare-earth compounds La-Al and Ce-H using the trained models, the convex hull phase diagrams constructed through the ensemble learning architecture, which combines the prediction results of the RF and NN models, were highly consistent with those constructed from the Open Quantum Materials Database. The models successfully captured several metastable phases that were not present in multiple databases. Moreover, the convex hull distances of the predicted phases were mostly less than 0.1 eV/atom, with the maximum not exceeding 0.2 eV/atom.

    In conclusion, this study successfully used ML models to predict the thermodynamic stability of rare-earth compounds. The constructed models demonstrated strong capabilities in classification and regression tasks. The ensemble learning architecture effectively improved the model performance, providing a promising tool for materials discovery in the field of rare-earth science and contributing to the research and development of new rare-earth compounds and the design of advanced materials.

  • [1]

    Dutta T, Kim K H, Uchimiya M, Kwon E E, Jeon B H, Deep A, Yun S T 2016 Environ. Res. 150 182

    [2]

    Ramos S J, Dinali G S, Oliveira C, Martins G C, Moreira C G, Siqueira J O, Guilherme L R G 2016 Curr. Pollut. Rep. 2 28

    [3]

    Du Z Y, Shen L P, Wang Q 2025 J. Mod. Oncol. 33 1(杜志勇, 沈丽萍, 王清 2025 现代肿瘤医学 33 1)

    [4]

    Meng S, Li G, Wang P, He M, Sun X, Li Z 2023 Mater. Chem. Front. 7 806

    [5]

    Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X 2022 Chem. Rev. 122 5519

    [6]

    Chen J, Zhao C Y, Liu D 2024 Hot Work. Technol. 53 11(陈娇, 赵超宇, 刘冬 2024 热加工工艺 53 11)

    [7]

    Liu G L 2006 Acta Phys. Sin. 55 6570(刘贵立 2006 物理学报 55 6570)

    [8]

    Zhang G Y, Zhang H, Wei D, Luo Z C, Li Y C 2009 Acta Phys. Sin. 58 444(张国英, 张辉, 魏丹, 罗志成, 李昱材 2009 物理学报 58 444)

    [9]

    Agrawal A, Choudhary A 2016 APL Mater. 4 053208

    [10]

    Pham T L, Nguyen N D, Nguyen V D, Kino H, Miyake T, Dam H C 2018 J. Chem. Phys. 148 204106

    [11]

    Pilania G, Liu X Y, Wang Z 2019 J. Mater. Sci. 54 8361

    [12]

    Singh P, Del Rose T, Vazquez G, Arroyave R, Mudryk Y 2022 Acta Mater. 229 117759

    [13]

    Zhang Q, Tan W, Ning Y Q, Nie G Z, Cai M Q, Wang J N, Zhu H P, Zhao Y Q 2024 Acta Phys. Sin. 73 230201(张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清 2024 物理学报 73 230201)

    [14]

    Lotfi S, Zhang Z, Viswanathan G, Fortenberry K, Mansouri Tehrani A, Brgoch J 2020 Matter 3 261

    [15]

    Schmidt J, Shi J, Borlido P, Chen L, Botti S, Marques M A L 2017 Chem. Mater. 29 5090

    [16]

    Talapatra A, Uberuaga B P, Stanek C R, Pilania G 2021 Chem. Mater. 33 845

    [17]

    Li W, Jacobs R, Morgan D 2018 Comput. Mater. Sci. 150 454

    [18]

    Odabaşı Ç, Yıldırım R 2020 Sol. Energy Mater. Sol. Cells 205 110284

    [19]

    Batra R, Chen C, Evans T G, Walton K S, Ramprasad R 2020 Nat. Mach. Intell. 2 704

    [20]

    Qin C, Liu J, Yu Y, Xu Z, Du J, Jiang G, Zhao L 2024 Ceram. Int. 50 1220

    [21]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 npj Comput. Mater. 1 15010

    [22]

    Zagorac D, Muller H, Ruehl S, Zagorac J, Rehme S 2019 J. Appl. Crystallogr. 52 918

    [23]

    Ward L, Agrawal A, Choudhary A, Wolverton C 2016 npj Comput Mater 2 16028

    [24]

    Ward L, Dunn A, Faghaninia A, Zimmermann N E R, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I, Jain A 2018 Comput. Mater. Sci. 152 60

    [25]

    Yang C, Ren C, Jia Y, Wang G, Li M, Lu W 2022 Acta Mater. 222 117431

    [26]

    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E 2011 J. Mach. Learn. Res. 12 2825

    [27]

    Bartel C J, Trewartha A, Wang Q, Dunn A, Jain A, Ceder G 2020 npj Comput. Mater. 6 97

    [28]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002

    [29]

    Jha D, Ward L, Paul A, Liao W K, Choudhary A, Wolverton C, Agrawal A 2018 Sci. Rep. 8 17593

  • [1] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别. 物理学报, doi: 10.7498/aps.74.20241458
    [2] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为. 物理学报, doi: 10.7498/aps.74.20241581
    [3] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学. 物理学报, doi: 10.7498/aps.74.20240999
    [4] 邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜. 机器学习在光电子能谱中的应用及展望. 物理学报, doi: 10.7498/aps.73.20240957
    [5] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测. 物理学报, doi: 10.7498/aps.73.20240284
    [6] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, doi: 10.7498/aps.73.20241278
    [7] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, doi: 10.7498/aps.73.20240747
    [8] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [9] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20240156
    [10] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, doi: 10.7498/aps.72.20230646
    [11] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, doi: 10.7498/aps.72.20230334
    [12] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, doi: 10.7498/aps.72.20231624
    [13] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, doi: 10.7498/aps.72.20230896
    [14] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究. 物理学报, doi: 10.7498/aps.71.20221555
    [15] 康俊锋, 冯松江, 邹倩, 李艳杰, 丁瑞强, 钟权加. 基于机器学习的非线性局部Lyapunov向量集合预报订正. 物理学报, doi: 10.7498/aps.71.20212260
    [16] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, doi: 10.7498/aps.71.20211632
    [17] 万新阳, 章烨辉, 陆帅华, 吴艺蕾, 周跫桦, 王金兰. 机器学习加速搜寻新型双钙钛矿氧化物光催化剂. 物理学报, doi: 10.7498/aps.71.20220601
    [18] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, doi: 10.7498/aps.70.20210831
    [19] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, doi: 10.7498/aps.70.20210879
    [20] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, doi: 10.7498/aps.68.20190942
计量
  • 文章访问数:  37
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-29

/

返回文章
返回