搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蛋白质计算中的机器学习

张嘉晖

引用本文:
Citation:

蛋白质计算中的机器学习

张嘉晖

Machine learning for in silico protein research

Zhang Jia-Hui
PDF
HTML
导出引用
  • 蛋白质计算一直以来都是科学领域中的重要课题, 而近年来其与机器学习的结合, 更是极大地推进了相关学科的发展. 本综述主要讨论了机器学习在四个重要的蛋白质计算领域内的研究进展, 这四个领域包括:分子动力学模拟、结构预测、性质预测和分子设计. 分子动力学模拟依赖于力场参数, 准确的力场参数是分子动力学模拟的必需品, 而机器学习可以帮助研究者得到更加准确的力场参数. 在分子动力学模拟中, 机器学习也可以从复杂的体系中以较小的代价计算出所需求解的自由能. 结构预测一般是给定蛋白质序列预测其结构. 结构预测复杂度高、数据量大, 而这恰恰是机器学习所擅长的. 在机器学习的协助下, 近年来科研人员已经在单个蛋白质三维结构预测上取得了不错的成果. 性质预测则是指通过给定的已知蛋白质信息, 推断其可能拥有的性质, 这对于蛋白质的研究也是至关重要的. 更具挑战性的是分子设计, 虽然近年来机器学习在蛋白质设计上取得突破, 但这一领域还有很大空间值得探索. 本综述将针对以上四点分别展开论述, 并对蛋白质计算中的机器学习研究进行展望.
    In silico protein calculation has been an important research subject for a long time, while its recent combination with machine learning promotes the development greatly in related areas. This review focuses on four major fields of the in silico protein research that combines with machine learning, which are molecular dynamics, structure prediction, property prediction and molecule design. Molecular dynamics depend on the parameters of force field, which is necessary for obtaining accurate results. Machine learning can help researchers to obtain more accurate force field parameters. In molecular dynamics simulation, machine learning can also help to perform the free energy calculation in relatively low cost. Structure prediction is generally used to predict the structure given a protein sequence. Structure prediction is of high complexity and data volume, which is exactly what machine learning is good at. By the help of machine learning, scientists have gained great achievements in three-dimensional structure prediction of proteins. On the other hand, the predicting of protein properties based on its known information is also important to study protein. More challenging, however, is molecule design. Though marching learning has made breakthroughs in drug-like small molecule design and protein design in recent years, there is still plenty of room for exploration. This review focuses on summarizing the above four fields andlooks forward to the application of marching learning to the in silico protein research.
      通信作者: 张嘉晖, jhzhang@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 22177107)资助的课题.
      Corresponding author: Zhang Jia-Hui, jhzhang@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 22177107).
    [1]

    Baltoumas F A, Zafeiropoulou S, Karatzas E, et al. 2021 Biomolecules 11 1245Google Scholar

    [2]

    Wolf Y I, Katsnelson M I, Koonin E V 2018 Proc. Natl. Acad. Sci. USA 115 E8678Google Scholar

    [3]

    Fusco A, Fedele M 2007 Nat. Rev. Cancer 7 899Google Scholar

    [4]

    Noble D 2002 Nat. Rev. Mol. Cell Biol. 3 459Google Scholar

    [5]

    Markowetz F 2017 PLoS Biology 15 e2002050Google Scholar

    [6]

    Hollingsworth S A, Dror R O 2018 Neuron 99 1129Google Scholar

    [7]

    Zhang Y 2008 Curr. Opin. Struct. Biol. 18 342Google Scholar

    [8]

    Agostini F, Vendruscolo M, Tartaglia G G 2012 J. Mol. Biol. 421 237Google Scholar

    [9]

    Chen L, Fan Z, Chang J, et al. 2023 Nat. Commun. 14 4217Google Scholar

    [10]

    Geng H, Chen F, Ye J, Jiang F 2019 Computat. Struct. Biotechnol. J. 17 1162Google Scholar

    [11]

    Salo-Ahen O M, Alanko I, Bhadane R, et al. 2020 Processes 9 71Google Scholar

    [12]

    Norberg J, Nilsson L 2003 Q. Rev. Biophys. 36 257Google Scholar

    [13]

    van der Kamp M W, Shaw K E, Woods C J, Mulholland A J 2008 J. R. Soc. Interface 5 173Google Scholar

    [14]

    Dror R O, Dirks R M, Grossman J, Xu H, Shaw D E 2012 Annu. Rev. Biophys. 41 429Google Scholar

    [15]

    Lin X, Li X, Lin X 2020 Molecules 25 1375Google Scholar

    [16]

    Pearce R, Zhang Y 2021 Curr. Opin. Struct. Biol. 68 194Google Scholar

    [17]

    Jordan M I, Mitchell T M 2015 Science 349 255Google Scholar

    [18]

    Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A 2018 Nature 559 547Google Scholar

    [19]

    Liakos K G, Busato P, Moshou D, Pearson S, Bochtis D 2018 Sensors 18 2674Google Scholar

    [20]

    Jiang T, Gradus J L, Rosellini A J 2020 Behav. Ther. 51 675Google Scholar

    [21]

    Hastie T, Tibshirani R, Friedman J, Hastie T, Tibshirani R, Friedman J 2009 Unsupervised Learning. In: The Elements of Statistical Learning. Springer Series in Statistics (New York: Springer) pp485–585

    [22]

    Van Engelen J E, Hoos H H 2020 Machine Learning 109 373Google Scholar

    [23]

    Wiering M A, Van Otterlo M 2012 Reinforcement Learning (Heidelberg, Berlin: Springer) p729

    [24]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [25]

    Deng L, Yu D 2014 Deep Learning: Methods and Applications (Now Foundations and Trends) p197

    [26]

    Jones D T 2019 Nat. Rev. Mol. Cell Biol. 20 659Google Scholar

    [27]

    Das P, Sercu T, Wadhawan K, et al. 2021 Nat. Biomed. Eng. 5 613Google Scholar

    [28]

    Kuhlman B, Bradley P 2019 Nat. Rev. Mol. Cell Biol. 20 681Google Scholar

    [29]

    Trevino S R, Scholtz J M, Pace C N 2008 J. Pharm. Sci. 97 4155Google Scholar

    [30]

    Kelley K W, Weigent D A, Kooijman R 2007 Brain Behav. Immun. 21 384Google Scholar

    [31]

    Babin V, Roland C, Sagui C 2008 J. Chem. Phys. 128Google Scholar

    [32]

    Morozov I V, Kazennov A M, Bystryi R, Norman G E, Pisarev V V, Stegailov V V 2011 Comput. Phys. Commun. 182 1974Google Scholar

    [33]

    Karplus M, McCammon J A 2002 Nat. Struct. Biol. 9 646Google Scholar

    [34]

    Wang Y, Ribeiro J M L, Tiwary P 2020 Curr. Opin. Struct. Biol. 61 139Google Scholar

    [35]

    Chmiela S, Tkatchenko A, Sauceda H E, Poltavsky I, Schütt K T, Müller K R 2017 Sci. Adv. 3 e1603015Google Scholar

    [36]

    Ponder J W, Case D A 2003 Adv. Protein Chem. 66 27Google Scholar

    [37]

    Monticelli L, Tieleman D P 2013 Biomolecular Simulations: Methods and Protocols 197

    [38]

    Wang J, Wolf R M, Caldwell J W, Kollman P A, Case D A 2004 J. Comput. Chem. 25 1157Google Scholar

    [39]

    Hughes Z E, Wright L B, Walsh T R 2013 Langmuir 29 13217Google Scholar

    [40]

    Cesari A, Bottaro S, Lindorff-Larsen K, Banáš P, Šponer J, Bussi G 2019 J. Chem. Theory Comput. 15 3425Google Scholar

    [41]

    Unke O T, Chmiela S, Sauceda H E, Gastegger M, Poltavsky I, Schütt K T, Tkatchenko A, Müller K R 2021 Chem. Rev. 121 10142Google Scholar

    [42]

    Poltavsky I, Tkatchenko A 2021 J. Phys. Chem. Lett. 12 6551Google Scholar

    [43]

    Kästner J 2011 WIREs Comput. Mol. Sci. 1 932Google Scholar

    [44]

    Izrailev S, Stepaniants S, Isralewitz B, Kosztin D, Lu H, Molnar F, Wriggers W, Schulten K 1999 Computational Molecular Dynamics: Challenges, Methods, Ideas: Proceedings of the 2nd International Symposium on Algorithms for Macromolecular Modelling Berlin, May 21–24, 1997 p39

    [45]

    Moradi M, Babin V, Roland C, Sagui C 2013 Nucleic Acids Res. 41 33Google Scholar

    [46]

    Simonson T, Archontis G, Karplus M 2002 Acc. Chem. Res. 35 430Google Scholar

    [47]

    Bitencourt-Ferreira G, de Azevedo W F 2018 Biophys. Chem. 240 63Google Scholar

    [48]

    Trott O, Olson A J 2010 J. Comput. Chem. 31 455Google Scholar

    [49]

    Besora M, Vidossich P, Lledos A, Ujaque G, Maseras F 2018 J. Phys. Chem. A 122 1392Google Scholar

    [50]

    Pan X, Yang J, Van R, Epifanovsky E, Ho J, Huang J, Pu J, Mei Y, Nam K, Shao Y 2021 J. Chem. Theory Comput. 17 5745Google Scholar

    [51]

    Senn H M, Thiel W 2009 Angew. Chem. Int. Ed. 48 1198Google Scholar

    [52]

    Riniker S 2017 J. Chem. Inf. Model. 57 726Google Scholar

    [53]

    Bennett W D, He S, Bilodeau C L, Jones D, Sun D, Kim H, Allen J E, Lightstone F C, Ingólfsson H I 2020 J. Chem. Inf. Model. 60 5375Google Scholar

    [54]

    Bertazzo M, Gobbo D, Decherchi S, Cavalli A 2021 J. Chem. Theory Comput. 17 5287Google Scholar

    [55]

    Eswar N, John B, Mirkovic N, et al. 2003 Nucleic Acids Research 31 3375Google Scholar

    [56]

    Asara J M, Schweitzer M H, Freimark L M, Phillips M, Cantley L C 2007 Science 316 280Google Scholar

    [57]

    Greener J G, Kandathil S M, Moffat L, Jones D T 2022 Nat. Rev. Mol. Cell Biol. 23 40Google Scholar

    [58]

    Jumper J, Evans R, Pritzel A, et al. 2021 Nature 596 583Google Scholar

    [59]

    Wu R, Ding F, Wang R, et al. 2022 bioRxiv 2022.07.21. 500999

    [60]

    Baek M, DiMaio F, Anishchenko I, et al. 2021 Science 373 871Google Scholar

    [61]

    Medsker L R, Jain L 1999 Recurrent Neural Networks: Design and Applications (1st Ed.) (CRC Press) p2

    [62]

    Kim P 2017 Convolutional Neural Network. In: MATLAB Deep Learning (Berkeley, CA: Apress) p121

    [63]

    Wardah W, Khan M G, Sharma A, Rashid M A 2019 Comput. Biol. Chem. 81 1Google Scholar

    [64]

    Mirabello C, Pollastri G 2013 Bioinformatics 29 2056Google Scholar

    [65]

    Heffernan R, Yang Y, Paliwal K, Zhou Y 2017 Bioinformatics 33 2842Google Scholar

    [66]

    Wang S, Peng J, Ma J, Xu J 2016 Sci. Rep. 6 1Google Scholar

    [67]

    Li Z, Yu Y 2016 arXiv: 1604.07176 [q-bio.BM]

    [68]

    Wang Y, Mao H, Yi Z 2017 Knowledge-Based Systems 118 115Google Scholar

    [69]

    Nishikawa K, Ooi T, Isogai Y, Saitô N 1972 J. Phys. Soc. JPN 32 1331Google Scholar

    [70]

    Edgar R C, Batzoglou S 2006 Curr. Opin. Struct. Biol. 16 368Google Scholar

    [71]

    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I 2017 Advances in Neural Information Processing Systems 30 Long Beach, USA, December 4–9, 2017 p30

    [72]

    Janin J, Bahadur R P, Chakrabarti P 2008 Q. Rev. Biophys. 41 133Google Scholar

    [73]

    Zafferani M, Hargrove A E 2021 Cell Chem. Biol. 28 594Google Scholar

    [74]

    Hunter C A 2004 Angew. Chem. Int. Ed. 43 5310Google Scholar

    [75]

    Chen R, Li L, Weng Z 2003 Proteins Struct. Funct. Bioinf. 52 80Google Scholar

    [76]

    Jingcheng Y, Zhaoming C, Zhaoqun L, Mingliang Z, Wenjun L, He H, Qiwei Y 2022 Code of Open Complex https:// github.com/baaihealth/OpenComplex.

    [77]

    Evans R, O’ Neill M, Pritzel A, et al. 2021 bioRxiv 2021.10.04.463034

    [78]

    Moriwaki Y 2021 Twitter https://twitter.com/Ag_smith/ status.

    [79]

    Ko J, Lee J 2021 bioRxiv 2021.07.27.453972

    Ko J, Lee J 2021 bioRxiv 2021.07.27.453972

    [80]

    Tsaban T, Varga J K, Avraham O, Ben-Aharon Z, Khramushin A, Schueler-Furman O 2022 Nat. Commun. 13 176Google Scholar

    [81]

    Bryant P, Pozzati G, Elofsson A 2022 Nat. Commun. 13 1265Google Scholar

    [82]

    Zhou T M, Wang S, Xu J 2017 bioRxiv 240754

    [83]

    Cang Z, Wei G W 2017 PLoS Comput. Biol. 13 e1005690Google Scholar

    [84]

    Yagi K, Re S, Mori T, Sugita Y 2022 Curr. Opin. Struct. Biol. 72 88Google Scholar

    [85]

    Vendruscolo M, Knowles T P, Dobson C M 2011 CSH Perspect. Biol. 3 a010454Google Scholar

    [86]

    Khurana S, Rawi R, Kunji K, Chuang G Y, Bensmail H, Mall R 2018 Bioinformatics 34 2605Google Scholar

    [87]

    Wu X, Yu L 2021 Bioinformatics 37 4314Google Scholar

    [88]

    Schellekens H 2003 Nephrology Dialysis Transplantation 18 1257Google Scholar

    [89]

    Ternette N, Tippler B, Überla K, Grunwald T 2007 Vaccine 25 7271Google Scholar

    [90]

    Jefferis R 2016 J. Immunol. Res. 2016Google Scholar

    [91]

    Schellekens H 2005 Nephrology Dialysis Transplantation 20 vi3Google Scholar

    [92]

    Smith C C, Chai S, Washington A R, et al. 2019 Cancer Immunol. Res. 7 1591Google Scholar

    [93]

    Gonzalez-Dias P, Lee E K, Sorgi S, de Lima D S, Urbanski A H, Silveira E L, Nakaya H I 2020 Hum. Vacc. Immunother. 16 269Google Scholar

    [94]

    Timr S, Madern D, Sterpone F 2020 Prog. Mol. Biol. Transl. Sci. 170 239Google Scholar

    [95]

    Pudžiuvelytė I, Olechnovič K, Godliauskaite E, Sermokas K, Urbaitis T, Gasiunas G, Kazlauskas D 2023 bioRxiv 2023.03.27.534365

    Pudžiuvelytė I, Olechnovič K, Godliauskaite E, Sermokas K, Urbaitis T, Gasiunas G, Kazlauskas D 2023 bioRxiv 2023.03.27.534365

    [96]

    Rives A, Meier J, Sercu T, et al. 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2016239118Google Scholar

    [97]

    Elnaggar A, Heinzinger M, Dallago C, et al. 2022 IEEE Trans. Pattern Anal. Mach. Intell. 44 7112Google Scholar

    [98]

    Huang P S, Boyken S E, Baker D 2016 Nature 537 320Google Scholar

    [99]

    Huang B, Xu Y, Hu X, Liu Y, Liao S, Zhang J, Huang C, Hong J, Chen Q, Liu H 2022 Nature 602 523Google Scholar

    [100]

    Watson J L, Juergens D, Bennett N R, et al. 2023 Nature 620 1089Google Scholar

    [101]

    Yang L, Zhang Z, Song Y, Hong S, Xu R, Zhao Y, Shao Y, Zhang W, Cui B, Yang M H 2022 arXiv: 2209.00796 [cs.LG]

    [102]

    Croitoru F A, Hondru V, Ionescu R T, Shah M 2023 IEEE Trans. Pattern Anal. Mach. Intell. 45 10850Google Scholar

    [103]

    Kong Z, Ping W, Huang J, Zhao K, Catanzaro B 2020 arXiv: 2009.09761 [eess.AS]

    [104]

    Liu Y, Chen L, Liu H 2022 bioRxiv 2022.12.17.52084

    Liu Y, Chen L, Liu H 2022 bioRxiv 2022.12.17.52084

    [105]

    Watson J L, Juergens D, Bennett N R, et al. 2022 bioRxiv 2022.12.09.519842

    [106]

    Xiong P, Wang M, Zhou X, Zhang T, Zhang J, Chen Q, Liu H 2014 Nat. Commun. 5 5330Google Scholar

    [107]

    Xiong P, Hu X, Huang B, Zhang J, Chen Q, Liu H 2020 Bioinformatics 36 136Google Scholar

    [108]

    Dauparas J, Anishchenko I, Bennett N, et al. 2022 Science 378 49Google Scholar

    [109]

    Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M 2020 AI open 1 57Google Scholar

    [110]

    Chen Y, Chen Q, Liu H 2022 J. Chem. Inf. Model. 62 971Google Scholar

    [111]

    Marchand A, Van Hall-Beauvais A K, Correia B E 2022 Curr. Opin. Struct. Biol. 74 102370Google Scholar

    [112]

    Shi C, Wang C, Lu J, Zhong B, Tang J 2022 arXiv: 2210.08761 [q-bio. BM]

    [113]

    Dixit R, Khambhati K, Supraja K V, Singh V, Lederer F, Show P L, Awasthi M K, Sharma A, Jain R 2022 Bioresour. Technol. 128522Google Scholar

    [114]

    Kaptan S, Vattulainen I 2022 Adv. Phys.: X 7 2006080Google Scholar

    [115]

    Casadevall G, Duran C, Osuna S 2023 JACS Au 3 1554Google Scholar

    [116]

    Webb C, Ip S, Bathula N V, et al. 2022 Mol. Pharmaceutics 19 1047Google Scholar

    [117]

    Mauro V P, Chappell S A 2014 Trends Mol. Med. 20 604Google Scholar

    [118]

    Sarkar D, Saha S 2019 J. Biosci. 44 104Google Scholar

  • 图 1  量子力学与机器学习间的相似性. 从左到右, 从上到下的图片分别是: Chignolin蛋白质在(a)无水环境和(b)有水环境下的情况, 使用SchNet模型得到的(c)可视化电荷密度和(d)局部化学势, (e)氢原子的波函数以及(f)Müller-Brown势能. 图片引自文献[42] (版权属于美国化学会)

    Fig. 1.  Similarity between quantum mechanics and machine learning. Images from left to right from top to bottom: Chignolin protein (a) without and (b) with the water environment, (c) visualized total charge densities and (d) local chemical potentials obtained using the SchNet model, (e) wave functions for hydrogen atom and (f) Müller-Brown potential. Reprinted with permission from Ref. [42] (Copyright 2021 American Chemical Society).

    图 2  AlphaFold2的结构图

    Fig. 2.  Architecture of AlphaFold2.

    图 3  AlphaFold-Multimer的多序列比对构建方法

    Fig. 3.  Construction of MSA used in AlphaFold-Multimer.

    图 4  ProteinMPNN模型核心思想示意图

    Fig. 4.  Main idea of ProteinMPNN.

    图 5  蛋白质结构序列协同设计的一种机器学习模型示意图

    Fig. 5.  Illustration of a machine learning model of protein structure-sequence co-design.

  • [1]

    Baltoumas F A, Zafeiropoulou S, Karatzas E, et al. 2021 Biomolecules 11 1245Google Scholar

    [2]

    Wolf Y I, Katsnelson M I, Koonin E V 2018 Proc. Natl. Acad. Sci. USA 115 E8678Google Scholar

    [3]

    Fusco A, Fedele M 2007 Nat. Rev. Cancer 7 899Google Scholar

    [4]

    Noble D 2002 Nat. Rev. Mol. Cell Biol. 3 459Google Scholar

    [5]

    Markowetz F 2017 PLoS Biology 15 e2002050Google Scholar

    [6]

    Hollingsworth S A, Dror R O 2018 Neuron 99 1129Google Scholar

    [7]

    Zhang Y 2008 Curr. Opin. Struct. Biol. 18 342Google Scholar

    [8]

    Agostini F, Vendruscolo M, Tartaglia G G 2012 J. Mol. Biol. 421 237Google Scholar

    [9]

    Chen L, Fan Z, Chang J, et al. 2023 Nat. Commun. 14 4217Google Scholar

    [10]

    Geng H, Chen F, Ye J, Jiang F 2019 Computat. Struct. Biotechnol. J. 17 1162Google Scholar

    [11]

    Salo-Ahen O M, Alanko I, Bhadane R, et al. 2020 Processes 9 71Google Scholar

    [12]

    Norberg J, Nilsson L 2003 Q. Rev. Biophys. 36 257Google Scholar

    [13]

    van der Kamp M W, Shaw K E, Woods C J, Mulholland A J 2008 J. R. Soc. Interface 5 173Google Scholar

    [14]

    Dror R O, Dirks R M, Grossman J, Xu H, Shaw D E 2012 Annu. Rev. Biophys. 41 429Google Scholar

    [15]

    Lin X, Li X, Lin X 2020 Molecules 25 1375Google Scholar

    [16]

    Pearce R, Zhang Y 2021 Curr. Opin. Struct. Biol. 68 194Google Scholar

    [17]

    Jordan M I, Mitchell T M 2015 Science 349 255Google Scholar

    [18]

    Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A 2018 Nature 559 547Google Scholar

    [19]

    Liakos K G, Busato P, Moshou D, Pearson S, Bochtis D 2018 Sensors 18 2674Google Scholar

    [20]

    Jiang T, Gradus J L, Rosellini A J 2020 Behav. Ther. 51 675Google Scholar

    [21]

    Hastie T, Tibshirani R, Friedman J, Hastie T, Tibshirani R, Friedman J 2009 Unsupervised Learning. In: The Elements of Statistical Learning. Springer Series in Statistics (New York: Springer) pp485–585

    [22]

    Van Engelen J E, Hoos H H 2020 Machine Learning 109 373Google Scholar

    [23]

    Wiering M A, Van Otterlo M 2012 Reinforcement Learning (Heidelberg, Berlin: Springer) p729

    [24]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [25]

    Deng L, Yu D 2014 Deep Learning: Methods and Applications (Now Foundations and Trends) p197

    [26]

    Jones D T 2019 Nat. Rev. Mol. Cell Biol. 20 659Google Scholar

    [27]

    Das P, Sercu T, Wadhawan K, et al. 2021 Nat. Biomed. Eng. 5 613Google Scholar

    [28]

    Kuhlman B, Bradley P 2019 Nat. Rev. Mol. Cell Biol. 20 681Google Scholar

    [29]

    Trevino S R, Scholtz J M, Pace C N 2008 J. Pharm. Sci. 97 4155Google Scholar

    [30]

    Kelley K W, Weigent D A, Kooijman R 2007 Brain Behav. Immun. 21 384Google Scholar

    [31]

    Babin V, Roland C, Sagui C 2008 J. Chem. Phys. 128Google Scholar

    [32]

    Morozov I V, Kazennov A M, Bystryi R, Norman G E, Pisarev V V, Stegailov V V 2011 Comput. Phys. Commun. 182 1974Google Scholar

    [33]

    Karplus M, McCammon J A 2002 Nat. Struct. Biol. 9 646Google Scholar

    [34]

    Wang Y, Ribeiro J M L, Tiwary P 2020 Curr. Opin. Struct. Biol. 61 139Google Scholar

    [35]

    Chmiela S, Tkatchenko A, Sauceda H E, Poltavsky I, Schütt K T, Müller K R 2017 Sci. Adv. 3 e1603015Google Scholar

    [36]

    Ponder J W, Case D A 2003 Adv. Protein Chem. 66 27Google Scholar

    [37]

    Monticelli L, Tieleman D P 2013 Biomolecular Simulations: Methods and Protocols 197

    [38]

    Wang J, Wolf R M, Caldwell J W, Kollman P A, Case D A 2004 J. Comput. Chem. 25 1157Google Scholar

    [39]

    Hughes Z E, Wright L B, Walsh T R 2013 Langmuir 29 13217Google Scholar

    [40]

    Cesari A, Bottaro S, Lindorff-Larsen K, Banáš P, Šponer J, Bussi G 2019 J. Chem. Theory Comput. 15 3425Google Scholar

    [41]

    Unke O T, Chmiela S, Sauceda H E, Gastegger M, Poltavsky I, Schütt K T, Tkatchenko A, Müller K R 2021 Chem. Rev. 121 10142Google Scholar

    [42]

    Poltavsky I, Tkatchenko A 2021 J. Phys. Chem. Lett. 12 6551Google Scholar

    [43]

    Kästner J 2011 WIREs Comput. Mol. Sci. 1 932Google Scholar

    [44]

    Izrailev S, Stepaniants S, Isralewitz B, Kosztin D, Lu H, Molnar F, Wriggers W, Schulten K 1999 Computational Molecular Dynamics: Challenges, Methods, Ideas: Proceedings of the 2nd International Symposium on Algorithms for Macromolecular Modelling Berlin, May 21–24, 1997 p39

    [45]

    Moradi M, Babin V, Roland C, Sagui C 2013 Nucleic Acids Res. 41 33Google Scholar

    [46]

    Simonson T, Archontis G, Karplus M 2002 Acc. Chem. Res. 35 430Google Scholar

    [47]

    Bitencourt-Ferreira G, de Azevedo W F 2018 Biophys. Chem. 240 63Google Scholar

    [48]

    Trott O, Olson A J 2010 J. Comput. Chem. 31 455Google Scholar

    [49]

    Besora M, Vidossich P, Lledos A, Ujaque G, Maseras F 2018 J. Phys. Chem. A 122 1392Google Scholar

    [50]

    Pan X, Yang J, Van R, Epifanovsky E, Ho J, Huang J, Pu J, Mei Y, Nam K, Shao Y 2021 J. Chem. Theory Comput. 17 5745Google Scholar

    [51]

    Senn H M, Thiel W 2009 Angew. Chem. Int. Ed. 48 1198Google Scholar

    [52]

    Riniker S 2017 J. Chem. Inf. Model. 57 726Google Scholar

    [53]

    Bennett W D, He S, Bilodeau C L, Jones D, Sun D, Kim H, Allen J E, Lightstone F C, Ingólfsson H I 2020 J. Chem. Inf. Model. 60 5375Google Scholar

    [54]

    Bertazzo M, Gobbo D, Decherchi S, Cavalli A 2021 J. Chem. Theory Comput. 17 5287Google Scholar

    [55]

    Eswar N, John B, Mirkovic N, et al. 2003 Nucleic Acids Research 31 3375Google Scholar

    [56]

    Asara J M, Schweitzer M H, Freimark L M, Phillips M, Cantley L C 2007 Science 316 280Google Scholar

    [57]

    Greener J G, Kandathil S M, Moffat L, Jones D T 2022 Nat. Rev. Mol. Cell Biol. 23 40Google Scholar

    [58]

    Jumper J, Evans R, Pritzel A, et al. 2021 Nature 596 583Google Scholar

    [59]

    Wu R, Ding F, Wang R, et al. 2022 bioRxiv 2022.07.21. 500999

    [60]

    Baek M, DiMaio F, Anishchenko I, et al. 2021 Science 373 871Google Scholar

    [61]

    Medsker L R, Jain L 1999 Recurrent Neural Networks: Design and Applications (1st Ed.) (CRC Press) p2

    [62]

    Kim P 2017 Convolutional Neural Network. In: MATLAB Deep Learning (Berkeley, CA: Apress) p121

    [63]

    Wardah W, Khan M G, Sharma A, Rashid M A 2019 Comput. Biol. Chem. 81 1Google Scholar

    [64]

    Mirabello C, Pollastri G 2013 Bioinformatics 29 2056Google Scholar

    [65]

    Heffernan R, Yang Y, Paliwal K, Zhou Y 2017 Bioinformatics 33 2842Google Scholar

    [66]

    Wang S, Peng J, Ma J, Xu J 2016 Sci. Rep. 6 1Google Scholar

    [67]

    Li Z, Yu Y 2016 arXiv: 1604.07176 [q-bio.BM]

    [68]

    Wang Y, Mao H, Yi Z 2017 Knowledge-Based Systems 118 115Google Scholar

    [69]

    Nishikawa K, Ooi T, Isogai Y, Saitô N 1972 J. Phys. Soc. JPN 32 1331Google Scholar

    [70]

    Edgar R C, Batzoglou S 2006 Curr. Opin. Struct. Biol. 16 368Google Scholar

    [71]

    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I 2017 Advances in Neural Information Processing Systems 30 Long Beach, USA, December 4–9, 2017 p30

    [72]

    Janin J, Bahadur R P, Chakrabarti P 2008 Q. Rev. Biophys. 41 133Google Scholar

    [73]

    Zafferani M, Hargrove A E 2021 Cell Chem. Biol. 28 594Google Scholar

    [74]

    Hunter C A 2004 Angew. Chem. Int. Ed. 43 5310Google Scholar

    [75]

    Chen R, Li L, Weng Z 2003 Proteins Struct. Funct. Bioinf. 52 80Google Scholar

    [76]

    Jingcheng Y, Zhaoming C, Zhaoqun L, Mingliang Z, Wenjun L, He H, Qiwei Y 2022 Code of Open Complex https:// github.com/baaihealth/OpenComplex.

    [77]

    Evans R, O’ Neill M, Pritzel A, et al. 2021 bioRxiv 2021.10.04.463034

    [78]

    Moriwaki Y 2021 Twitter https://twitter.com/Ag_smith/ status.

    [79]

    Ko J, Lee J 2021 bioRxiv 2021.07.27.453972

    Ko J, Lee J 2021 bioRxiv 2021.07.27.453972

    [80]

    Tsaban T, Varga J K, Avraham O, Ben-Aharon Z, Khramushin A, Schueler-Furman O 2022 Nat. Commun. 13 176Google Scholar

    [81]

    Bryant P, Pozzati G, Elofsson A 2022 Nat. Commun. 13 1265Google Scholar

    [82]

    Zhou T M, Wang S, Xu J 2017 bioRxiv 240754

    [83]

    Cang Z, Wei G W 2017 PLoS Comput. Biol. 13 e1005690Google Scholar

    [84]

    Yagi K, Re S, Mori T, Sugita Y 2022 Curr. Opin. Struct. Biol. 72 88Google Scholar

    [85]

    Vendruscolo M, Knowles T P, Dobson C M 2011 CSH Perspect. Biol. 3 a010454Google Scholar

    [86]

    Khurana S, Rawi R, Kunji K, Chuang G Y, Bensmail H, Mall R 2018 Bioinformatics 34 2605Google Scholar

    [87]

    Wu X, Yu L 2021 Bioinformatics 37 4314Google Scholar

    [88]

    Schellekens H 2003 Nephrology Dialysis Transplantation 18 1257Google Scholar

    [89]

    Ternette N, Tippler B, Überla K, Grunwald T 2007 Vaccine 25 7271Google Scholar

    [90]

    Jefferis R 2016 J. Immunol. Res. 2016Google Scholar

    [91]

    Schellekens H 2005 Nephrology Dialysis Transplantation 20 vi3Google Scholar

    [92]

    Smith C C, Chai S, Washington A R, et al. 2019 Cancer Immunol. Res. 7 1591Google Scholar

    [93]

    Gonzalez-Dias P, Lee E K, Sorgi S, de Lima D S, Urbanski A H, Silveira E L, Nakaya H I 2020 Hum. Vacc. Immunother. 16 269Google Scholar

    [94]

    Timr S, Madern D, Sterpone F 2020 Prog. Mol. Biol. Transl. Sci. 170 239Google Scholar

    [95]

    Pudžiuvelytė I, Olechnovič K, Godliauskaite E, Sermokas K, Urbaitis T, Gasiunas G, Kazlauskas D 2023 bioRxiv 2023.03.27.534365

    Pudžiuvelytė I, Olechnovič K, Godliauskaite E, Sermokas K, Urbaitis T, Gasiunas G, Kazlauskas D 2023 bioRxiv 2023.03.27.534365

    [96]

    Rives A, Meier J, Sercu T, et al. 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2016239118Google Scholar

    [97]

    Elnaggar A, Heinzinger M, Dallago C, et al. 2022 IEEE Trans. Pattern Anal. Mach. Intell. 44 7112Google Scholar

    [98]

    Huang P S, Boyken S E, Baker D 2016 Nature 537 320Google Scholar

    [99]

    Huang B, Xu Y, Hu X, Liu Y, Liao S, Zhang J, Huang C, Hong J, Chen Q, Liu H 2022 Nature 602 523Google Scholar

    [100]

    Watson J L, Juergens D, Bennett N R, et al. 2023 Nature 620 1089Google Scholar

    [101]

    Yang L, Zhang Z, Song Y, Hong S, Xu R, Zhao Y, Shao Y, Zhang W, Cui B, Yang M H 2022 arXiv: 2209.00796 [cs.LG]

    [102]

    Croitoru F A, Hondru V, Ionescu R T, Shah M 2023 IEEE Trans. Pattern Anal. Mach. Intell. 45 10850Google Scholar

    [103]

    Kong Z, Ping W, Huang J, Zhao K, Catanzaro B 2020 arXiv: 2009.09761 [eess.AS]

    [104]

    Liu Y, Chen L, Liu H 2022 bioRxiv 2022.12.17.52084

    Liu Y, Chen L, Liu H 2022 bioRxiv 2022.12.17.52084

    [105]

    Watson J L, Juergens D, Bennett N R, et al. 2022 bioRxiv 2022.12.09.519842

    [106]

    Xiong P, Wang M, Zhou X, Zhang T, Zhang J, Chen Q, Liu H 2014 Nat. Commun. 5 5330Google Scholar

    [107]

    Xiong P, Hu X, Huang B, Zhang J, Chen Q, Liu H 2020 Bioinformatics 36 136Google Scholar

    [108]

    Dauparas J, Anishchenko I, Bennett N, et al. 2022 Science 378 49Google Scholar

    [109]

    Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M 2020 AI open 1 57Google Scholar

    [110]

    Chen Y, Chen Q, Liu H 2022 J. Chem. Inf. Model. 62 971Google Scholar

    [111]

    Marchand A, Van Hall-Beauvais A K, Correia B E 2022 Curr. Opin. Struct. Biol. 74 102370Google Scholar

    [112]

    Shi C, Wang C, Lu J, Zhong B, Tang J 2022 arXiv: 2210.08761 [q-bio. BM]

    [113]

    Dixit R, Khambhati K, Supraja K V, Singh V, Lederer F, Show P L, Awasthi M K, Sharma A, Jain R 2022 Bioresour. Technol. 128522Google Scholar

    [114]

    Kaptan S, Vattulainen I 2022 Adv. Phys.: X 7 2006080Google Scholar

    [115]

    Casadevall G, Duran C, Osuna S 2023 JACS Au 3 1554Google Scholar

    [116]

    Webb C, Ip S, Bathula N V, et al. 2022 Mol. Pharmaceutics 19 1047Google Scholar

    [117]

    Mauro V P, Chappell S A 2014 Trends Mol. Med. 20 604Google Scholar

    [118]

    Sarkar D, Saha S 2019 J. Biosci. 44 104Google Scholar

  • [1] 汤天一, 熊翊名, 张睿格, 张建, 李文飞, 王骏, 王炜. 融合结构知识的蛋白质预训练模型进展. 物理学报, 2024, 73(18): 188701. doi: 10.7498/aps.73.20240811
    [2] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 物理学报, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [3] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测. 物理学报, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [4] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [5] 林开东, 林晓倩, 林绪波. 靶向PD-L1蛋白的计算机辅助药物筛选. 物理学报, 2023, 72(24): 240501. doi: 10.7498/aps.72.20231068
    [6] 陈光临, 张志勇. 使用中间层受监督的自编码器探索蛋白质的构象空间. 物理学报, 2023, 72(24): 248705. doi: 10.7498/aps.72.20231060
    [7] 杨章章, 刘丽, 万致涛, 付佳, 樊群超, 谢锋, 张燚, 马杰. 结合机器学习算法提高从头算方法对HF/HBr/H35Cl/Na35Cl振动能谱的预测性能. 物理学报, 2023, 72(7): 073101. doi: 10.7498/aps.72.20221953
    [8] 罗启睿, 沈一凡, 罗孟波. 高分子塌缩相变和临界吸附相变的计算机模拟和机器学习. 物理学报, 2023, 72(24): 240502. doi: 10.7498/aps.72.20231058
    [9] 罗方芳, 蔡志涛, 黄艳东. 蛋白质pKa预测模型研究进展. 物理学报, 2023, 72(24): 248704. doi: 10.7498/aps.72.20231356
    [10] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [11] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [12] 周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超. 二维SiP2同素异构体结构预测及其电子性质的第一性原理研究. 物理学报, 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [13] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [14] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [15] 刘春杰, 赵新军, 高志福, 蒋中英. 高分子混合刷吸附/脱附蛋白质的模型化研究. 物理学报, 2021, 70(22): 224701. doi: 10.7498/aps.70.20211219
    [16] 王琛, 宋海洋, 安敏荣. 界面旋转角对双晶镁力学性质影响的分子动力学模拟. 物理学报, 2014, 63(4): 046201. doi: 10.7498/aps.63.046201
    [17] 颜笑, 辛子华, 张娇娇. 碳硅二炔结构及性质分子动力学模拟研究. 物理学报, 2013, 62(23): 238101. doi: 10.7498/aps.62.238101
    [18] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究. 物理学报, 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [19] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟. 物理学报, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [20] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 物理学报, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
计量
  • 文章访问数:  3729
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 修回日期:  2024-01-04
  • 上网日期:  2024-01-16
  • 刊出日期:  2024-03-20

/

返回文章
返回