搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器学习的量子动力学

王鹏 麦麦提尼亚孜·麦麦提阿卜杜拉

引用本文:
Citation:

机器学习的量子动力学

王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉

Quantum Dynamics of Machine Learning

WANG Peng, MAIMAITINIYAZI Maimaitiabudula
科大讯飞翻译 (iFLYTEK Translation)
PDF
导出引用
  • 本文基于第一性原理思想,采用量子动力学方法对机器学习的迭代运动过程进行建模。在机器学习的参数空间定义广义目标函数,利用Schrödinger方程和势能等效得到机器学习过程的量子动力学方程,通过Wick转动进一步建立了量子动力学与热动力学的关系,这为利用物理理论和数学理论对机器学习的迭代过程进行研究提供了可能。本文工作将机器学习的迭代过程转化为含时偏微分方程来进行精确数学表述,该方程表明机器学习过程可能存在多尺度的退火过程和同一尺度下的时间演化过程。利用量子动力学方程我们证明了机器学习在时间演化时的收敛性,解释了机器学习中的扩散模型是量子动力学方程在经典近似和低阶泰勒近似下的映射模型,导出了人工智能中常用的Softmax和Sigmoid函数。这些结果表明量子动力学方法在研究机器学习理论中是有效的。
    To address the current lack of rigorous theoretical models in the machine learning process, this paper adopts the quantum dynamic method to model the iterative motion process of machine learning based on the principles of first-principles thinking. This approach treats the iterative evolution of algorithms as a physical motion process, defines a generalized objective function in the parameter space of machine learning algorithms, and views the iterative process of machine learning as the process of seeking the optimal value for this generalized objective function. In physical terms, this process corresponds to the system reaching its ground energy state. Since the dynamic equation of a quantum system is the Schrödinger equation, by treating the generalized objective function as the potential energy term in the Schrödinger equation, we can obtain the quantum dynamic equation that describes the iterative process of machine learning. The process of machine learning is thus the process of seeking the ground energy state of the quantum system constrained by a generalized objective function. The quantum dynamic equation for machine learning transforms the iterative process into a time-dependent partial differential equation for precise mathematical representation, allowing for the study of the iterative process of machine learning using physical and mathematical theories. This provides theoretical support for implementing the iterative process of machine learning using quantum computers. To further apply the quantum dynamic equation to explain the iterative process of machine learning on classical computers, the Wick rotation is used to convert the quantum dynamic equation into a thermodynamic equation, demonstrating the convergence of the time evolution process in machine learning. As time approaches infinity, the system will converge to the ground energy state. Since an analytical expression cannot be given for the generalized objective function in the parameter space, Taylor expansion is used to approximate the generalized objective function. Under the zero-order Taylor approximation of the generalized objective function, the quantum dynamic equation and thermodynamic equation for machine learning degrade into the free-particle equation and diffusion equation, respectively. This result indicates that the most basic dynamic processes during the iteration of machine learning on quantum and classical computers are wave packet dispersion and diffusion, respectively. This result explains, from a dynamic perspective, the basic principles of diffusion models that have been successfully applied in the field of generative neural networks in recent years. Diffusion models indirectly realize the thermal diffusion process in the parameter space by adding and removing Gaussian noise to images, thereby optimizing the generalized objective function in the parameter space. The diffusion process is the dynamic process under the zero-order approximation of the generalized objective function. Meanwhile, using the thermodynamic equation of machine learning, we also derived the Softmax and Sigmoid functions commonly used in artificial intelligence. These results show that the quantum dynamic method is an effective theoretical approach for studying the iterative process of machine learning, providing rigorous mathematical and physical models for studying the iterative process of machine learning on both quantum and classical computers.
  • [1]

    Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E 1953 J. Chem. Phys. 211087

    [2]

    Kirkpatrick S, Gelatt C D, Vecchi M P 1983 Science 220671

    [3]

    Wang F, Wang P 2024 Quantum Inf. Process. 2366

    [4]

    Wang P, Xin G 2023 Acta Autom. Sin. 492396. (in Chinese) [王鹏,辛罡2023自动化学报492396]

    [5]

    Wang P, Huang Y, Ren C, Guo Y 2013 Acta Electron. Sin. 412468. (in Chinese) [王鹏,黄焱,任超,郭又铭2013电子学报412468]

    [6]

    Wang P, Wang F 2022 J. Univ. Electron. Sci. Technol. (Nat. Sci. Ed.) 512. (in Chinese) [王鹏,王方 2022电子科技大学学报(自然科学版) 512]

    [7]

    Johnson M W, Amin M H S, Gildert S 2011 Nature 473194

    [8]

    Sohl-Dickstein J, Weiss E, Maheswaranathan N, Ganguli S 2015 In Proceedings of the 32nd International Conference on Machine Learning (PMLR), p 2256

    [9]

    Song Y, Sohl-Dickstein J, Kingma D P, Kumar A, Ermon S, Poole B 2020 arXiv:2011.13456[cs.LG]

    [10]

    Xin G, Wang P, Jiao Y 2021 Expert. Syst. Appl. 185115615

    [11]

    Jin J, Wang P 2021 Swarm Evol. Comput. 65100916

    [12]

    Wick G C 1954 Phys. Rev. 961124

    [13]

    Dhariwal P, Nichol A 2021 In Proceedings of the 35th International Conference on Neural Information Processing Systems (Red Hook, NY, USA: Curran Associates, Inc.), p 672

    [14]

    Ho J, Jain A, Abbeel P 2020 In Proceedings of the 34th International Conference on Neural Information Processing Systems (Red Hook, NY, USA: Curran Associates, Inc.), p 574

    [15]

    Nichol A Q, Dhariwal P 2021 In Proceedings of the 38th International Conference on Machine Learning (PMLR), p 8162

    [16]

    Lim S, Yoon E, Byun T, Kang T, Kim S, Lee K, Choi S 2023 In Proceedings of the 37th International Conference on Neural Information Processing Systems (Red Hook, NY, USA: Curran Associates, Inc.), p 1645

    [17]

    Anderson J B 1975 J. Chem. Phys. 631499

    [18]

    Kosztin I, Faber B, Schulten K 1996 Am. J. Phys. 64633

    [19]

    Haghighi M K, Lüchow A 2017 J. Phys. Chem. A 1216165

    [20]

    Jeong J, Shin J 2023 In Advances in Neural Information Processing Systems, vol. 36(Red Hook, NY, USA: Curran Associates, Inc.), p 67374

    [21]

    Morawietz T, Artrith N 2021 J. Comput. Aid. Mol. Des. 35557

  • [1] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为. 物理学报, doi: 10.7498/aps.74.20241581
    [2] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, doi: 10.7498/aps.73.20240747
    [3] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [4] 谢国大, 潘攀, 任信钢, 冯乃星, 方明, 李迎松, 黄志祥. 高阶SF-SFDTD方法在含时薛定谔方程求解中的应用研究. 物理学报, doi: 10.7498/aps.73.20230771
    [5] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20240156
    [6] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, doi: 10.7498/aps.72.20230334
    [7] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, doi: 10.7498/aps.72.20231624
    [8] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, doi: 10.7498/aps.72.20230646
    [9] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, doi: 10.7498/aps.70.20210831
    [10] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, doi: 10.7498/aps.70.20210879
    [11] 申钰田, 孟胜. 光解水的原子尺度机理和量子动力学. 物理学报, doi: 10.7498/aps.68.20181312
    [12] 范桁. 量子计算与量子模拟. 物理学报, doi: 10.7498/aps.67.20180710
    [13] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟. 物理学报, doi: 10.7498/aps.61.089401
    [14] 刘晓静, 张佰军, 李海波, 刘兵, 张春丽, 郭义庆, 张丙新. 应用量子理论方法研究中子双缝衍射. 物理学报, doi: 10.7498/aps.59.4117
    [15] 刘 奎, 丁宏林, 张贤高, 余林蔚, 黄信凡, 陈坤基. 量子点浮置栅量子线沟道三栅结构单电子场效应管存储特性的数值模拟. 物理学报, doi: 10.7498/aps.57.7052
    [16] 厉江帆, 单树民, 杨建坤, 姜宗福. 失谐量子频率转换系统薛定谔方程的显式解析解. 物理学报, doi: 10.7498/aps.56.5597
    [17] 辛国锋, 陈国鹰, 花吉珍, 赵润, 康志龙, 冯荣珠, 安振峰. 941nm大功率应变单量子阱激光器的波长设计. 物理学报, doi: 10.7498/aps.53.1293
    [18] 张解放, 徐昌智, 何宝钢. 变量分离法与变系数非线性薛定谔方程的求解探索. 物理学报, doi: 10.7498/aps.53.3652
    [19] 李培咸, 郝 跃, 范 隆, 张进城, 张金凤, 张晓菊. 基于量子微扰的AlGaN/GaN异质结波函数半解析求解. 物理学报, doi: 10.7498/aps.52.2985
    [20] 刘剑波, 蔡喜平. 一维定态薛定谔方程的宏观模拟解法. 物理学报, doi: 10.7498/aps.50.820
计量
  • 文章访问数:  106
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-24

/

返回文章
返回