-
This research investigates the inverse problem of reconstructing the PT-symmetric potential in a class of (1 + 1)-dimensional nonlinear Schrödinger equations. The governing equation is given by: $\mathrm{i} u_t(x, t)+u_{x x}(x, t)+\alpha|u(x, t)|^2 u(x, t)+\beta|u(x, t)|^4 u(x, t)+V_{P T}(x) u(x, t)=0$ where u(x, t) denotes the wave function in dimensionless coordinates, and the PT-symmetric potential VPT (x) = V (x)+iW(x) consists of a real part V (x) and an imaginary part iW(x), satisfying the symmetry conditions V (x) = V (-x) and W(x) = -W(x)。
In this inverse problem, partial boundary values of the wave function are known, while the potential VPT (x) is the unknown to be reconstructed. To address this challenge, we construct a three-level finite difference scheme for the corresponding forward problem, discretizing both the wave function and the potential. This approach leads to a nonlinear system of equations that links the known wave data to the unknown potential values. To simplify the computation, we separate the real and imaginary parts of this system and reformulate it as a real-valued nonlinear system of equations.
For the numerical solution, we employ an inexact Newton method to iteratively solve the resulting nonlinear system. In each iteration, the Jacobian matrix is approximated numerically. To ensure that the reconstructed potential strictly satisfies the PT-symmetry, a parity correction mechanism is introduced at the end of the iteration process.
We conduct numerical experiments under both noise-free (exact data) and noisy (inexact data) conditions. The results demonstrate that in both cases, the proposed method converges within a limited number of iterations and maintains the reconstruction error within the order of 10-3. These findings validate the effectiveness and robustness of the proposed method in solving inverse problems involving PT-symmetric potentials, offering an innovative and practical approach for related numerical applications.-
Keywords:
- PT-symmetry /
- Schrö /
- dinger equation /
- potential function
-
[1] Liu Y P, Gao Y T, Wei G M 2012 Phys. A Stat. Mech. Appl. 391535
[2] Uthayakumar A, Han Y G, Lee S B 2006 Chaos Solitons Fractals 29916
[3] Bender C M, Boettcher S 1998 Phys. Rev. Lett. 805243
[4] El-Ganainy R, Makris K G, Christodoulides D N, Musslimani Z H 2007 Opt. Lett. 322632
[5] Bender C M 2007 Rep. Prog. Phys. 70947
[6] Baudouin L, Puel J P 2002 Inverse Probl. 181537
[7] Avdonin S A, Mikhaylov A S, Mikhaylov V S, Park J C 2021 Inverse Problems 37035002
[8] Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378686
[9] Zhou Z, Yan Z 2021 Phys. Lett. A 387127010
[10] Li J, Li B 2021 Commun. Theor. Phys. 73125001
[11] Zhang K 2024 Pure Math. 14117(in Chinese) [张坤2024理论数学14117]
[12] Qiu W X, Geng K L, Zhu B W, Liu W, Li J T, Dai C Q 2024 Nonlinear Dyn. 11210215
[13] Song J, Yan Z 2023 Physica D 448133729
[14] Wang S, Wang H, Perdikaris P 2021 Comput. Methods Appl. Mech. Eng. 384113938
[15] Liu Y, Wu R, Jiang Y 2024 J. Comput. Phys. 518113341
[16] Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S, Yang L 2021 Nat. Rev. Phys. 3422
[17] Lu L, Meng X, Mao Z, Karniadakis G E 2021 SIAM Rev. 63208
[18] Sun Z Z 2022 Numerical Solution of Partial Differential Equations. 3rd edn. (Beijing: Science Press), pp 320–349(in Chinese) [孙志忠2022偏微分方程数值解法第三版(北京: 科学出版社)第320—349页]
[19] Dembo R S, Eisenstat S C, Steihaug T 1982 SIAM J. Numer. Anal. 19400
[20] Göksel İ, Antar N, Bakırtaş İ 2015 Opt. Commun. 354277
计量
- 文章访问数: 14
- PDF下载量: 0
- 被引次数: 0