搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为

周耐根 洪涛 周浪

引用本文:
Citation:

MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为

周耐根, 洪涛, 周浪

A comparative study between MEAM and Tersoff potentials on the characteristics of melting and solidification of carborundum

Zhou Nai-Gen, Hong Tao, Zhou Lang
PDF
导出引用
  • 运用分子动力学方法对比模拟研究了碳化硅的体熔化、表面熔化和晶体生长过程.分别采用MEAM 势和Tersoff势两种势函数描述碳化硅.结果表明:体熔化时,两种势函数描述的SiC的原子平均能量、Lindemann指数和结构有序参数与温度的变化关系相似,但MEAM势对应的体熔点(4250 K)比Tersoff势(4750 K) 的要高.表面熔化时,两种势函数描述的SiC在相同的过热度下熔化速度相近;而在相同的温度条件下,MEAM 作用的SiC表面熔化速度更快.这是由于MEAM势SiC的热力学熔点(3338 K)低于Tersoff势SiC的热力学熔点(3430 K)的缘故.两种势函数作用的SiC在晶体生长方面差异很大.MEAM势SiC的晶体生长速度与过冷度有关, 过冷度约为400 K时晶体生长速度最快.但Tersoff势SiC晶体却在过冷度为01000 K的范围内均不能生长. 综合考虑,MEAM势比Tersoff势能更好地描述碳化硅的熔化和凝固行为.
    Molecular dynamic simulations of bulk melting, surface melting and crystal growth of SiC are carried out. The atomic interactions in SiC are calculated by MEAM and Tersoff potentials separately. The results show that the bulk melting of SiC with MEAM potential exhibits its relations to temperature similar to that with Tersoff potential, while can be indicated by the mean atomic energy, Lindemann index and structure order parameter. The difference between them is the bulk melt point: MEAM is 4250 K, while Tersoff is 4750 K. At the same superheat degree, the velocities of surface melting of SiC separately, with MEAM and Tersoff potentials are in substantial agreement. But at the same absolute temperature, the surface melting of SiC with MEAM potential is faster than that which the Tersoff potential, which is due to the difference in thermodynamic melting point. The Measured value of the thermodynamic melting point of MEAM is 3338 K compared with 3430 K of Tersoff. On the crystal growth side, the crystal growth velocity of SiC with MEAM potential is related to the undercooling. The fastest velocity corresponds to the undercooling of 400 K. However, the crystal of SiC with Tersoff potential cannot grow in the undercooling of 0 K1000 K. Overall, the MEAM potential is better than Tersoff potential in the sense of describing the melting and solidification of carborundum.
    • 基金项目: 国家自然科学基金(批准号:10502024)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10502024).
    [1]

    Morkoc S S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363

    [2]

    Lely J A 1955 Ber.Deut.Keram.Ges 32 229

    [3]

    Straughan V E, Mayer E F 1960 (Pergamon Press) pp84—93

    [4]

    Muller S G, Glass R C, Hobgood H M, Tsvetkov V F, Brady M, Henshall D, Malta D, Singh R, Palmour J, Carter C H 2001 Materials Science and Engineering B-Solid State Materials for Advanced Technology 80 327

    [5]

    Lei Y, Chen Z N 1997 Acta Phys. Sin. 46 0511(in Chinese) [雷雨,程兆年 1997 物理学报 46 0511]

    [6]

    Kluge M D, Ray J R 1988 Phys. Rev. B 39 1738

    [7]

    Baskes M I 1992 Phys. Rev. B 46 2727

    [8]

    Erhart P, Albe K 2005 Phys. Rev. B 71 035211

    [9]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [10]

    Tang M J, Yip S 1995 Phys. Rev. B 52 15150

    [11]

    Tang M J, Yip S 2009 J. Appl. Phys. 76 2719

    [12]

    Prskalo A P, Schmauder S, Ziebert C, Ye J, Ulrich S 2010 Surface and Coatings Technology 204 2081

    [13]

    Huang H C, Ghoniem N M,Wong J K, Baskes M 1995 Modelling Simul. Mater. Sci. Eng. 3 615

    [14]

    Shen H J 2007 J. Mater. Sci. 42 6382

    [15]

    Chatterjee A,Kalia R K, Nakano A, Omeltchenko A, Tsuruta K, Vashishta P, Loong C K,Winterer M, Klein S 2000 Appl.Phys.Lett. 77 1132

    [16]

    Baskes M I 1987 Phys. Rev. L 59 2666

    [17]

    Baskes M I, Nelson J S, Wright A F 1989 Phys. Rev. B 40 6085

    [18]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [19]

    Lindemann F 1910 J. Physik. Z. 11 609

    [20]

    Zhou Y Q, Karplus M, Ball K D, Stephen Berry R 2002 J. Chem. Phys. 116 2323

    [21]

    Wang H L, Wang X X, Liang H Y 2005 Acta Metall. Sin. 41 568 (in Chinese) [王海龙,王秀喜,梁海弋 2005 金属学报 41 568]

    [22]

    Ding F, Bolton K, Rosen A 2005 European Physical Journal D 34 275

    [23]

    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106

    [24]

    Sorkin V, Polturak E, Adler J 2003 Phys. Rev. B 68 174103

    [25]

    Lutsko J F, Wolf D, Phillpot S R, Yip S 1989 Phys. Rev. B 40 2841

    [26]

    Massalski T B, Okamoto H, Subramanian P R, Kacprzak L 1990 Binary Alloy Phase Diagrams (Volume 1) (USA:ASM International) p1485

  • [1]

    Morkoc S S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363

    [2]

    Lely J A 1955 Ber.Deut.Keram.Ges 32 229

    [3]

    Straughan V E, Mayer E F 1960 (Pergamon Press) pp84—93

    [4]

    Muller S G, Glass R C, Hobgood H M, Tsvetkov V F, Brady M, Henshall D, Malta D, Singh R, Palmour J, Carter C H 2001 Materials Science and Engineering B-Solid State Materials for Advanced Technology 80 327

    [5]

    Lei Y, Chen Z N 1997 Acta Phys. Sin. 46 0511(in Chinese) [雷雨,程兆年 1997 物理学报 46 0511]

    [6]

    Kluge M D, Ray J R 1988 Phys. Rev. B 39 1738

    [7]

    Baskes M I 1992 Phys. Rev. B 46 2727

    [8]

    Erhart P, Albe K 2005 Phys. Rev. B 71 035211

    [9]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [10]

    Tang M J, Yip S 1995 Phys. Rev. B 52 15150

    [11]

    Tang M J, Yip S 2009 J. Appl. Phys. 76 2719

    [12]

    Prskalo A P, Schmauder S, Ziebert C, Ye J, Ulrich S 2010 Surface and Coatings Technology 204 2081

    [13]

    Huang H C, Ghoniem N M,Wong J K, Baskes M 1995 Modelling Simul. Mater. Sci. Eng. 3 615

    [14]

    Shen H J 2007 J. Mater. Sci. 42 6382

    [15]

    Chatterjee A,Kalia R K, Nakano A, Omeltchenko A, Tsuruta K, Vashishta P, Loong C K,Winterer M, Klein S 2000 Appl.Phys.Lett. 77 1132

    [16]

    Baskes M I 1987 Phys. Rev. L 59 2666

    [17]

    Baskes M I, Nelson J S, Wright A F 1989 Phys. Rev. B 40 6085

    [18]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [19]

    Lindemann F 1910 J. Physik. Z. 11 609

    [20]

    Zhou Y Q, Karplus M, Ball K D, Stephen Berry R 2002 J. Chem. Phys. 116 2323

    [21]

    Wang H L, Wang X X, Liang H Y 2005 Acta Metall. Sin. 41 568 (in Chinese) [王海龙,王秀喜,梁海弋 2005 金属学报 41 568]

    [22]

    Ding F, Bolton K, Rosen A 2005 European Physical Journal D 34 275

    [23]

    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106

    [24]

    Sorkin V, Polturak E, Adler J 2003 Phys. Rev. B 68 174103

    [25]

    Lutsko J F, Wolf D, Phillpot S R, Yip S 1989 Phys. Rev. B 40 2841

    [26]

    Massalski T B, Okamoto H, Subramanian P R, Kacprzak L 1990 Binary Alloy Phase Diagrams (Volume 1) (USA:ASM International) p1485

  • [1] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [2] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊(Jun Wang), 邹 宇, 付宝勤(Baoqin Fu). 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211434
    [3] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失. 物理学报, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [4] 鲁媛媛, 鹿桂花, 周恒为, 黄以能. 锂辉石/碳化硅复相陶瓷材料的制备与性能. 物理学报, 2020, 69(11): 117701. doi: 10.7498/aps.69.20200232
    [5] 王鹏举, 范俊宇, 苏艳, 赵纪军. 基于机器学习构建的环三亚甲基三硝胺晶体势. 物理学报, 2020, 69(23): 238702. doi: 10.7498/aps.69.20200690
    [6] 李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威. 金刚石-碳化硅超硬复合材料的冲击强度. 物理学报, 2019, 68(15): 158101. doi: 10.7498/aps.68.20190350
    [7] 李源, 石爱红, 陈国玉, 顾秉栋. 基于蒙特卡罗方法的4H-SiC(0001)面聚并台阶形貌演化机理. 物理学报, 2019, 68(7): 078101. doi: 10.7498/aps.68.20182067
    [8] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [9] 黄伟超, 刘丁, 焦尚彬, 张妮. 直拉法晶体生长过程非稳态流体热流耦合. 物理学报, 2015, 64(20): 208102. doi: 10.7498/aps.64.208102
    [10] 周耐根, 胡秋发, 许文祥, 李克, 周浪. 硅熔化特性的分子动力学模拟–-不同势函数的对比研究 . 物理学报, 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [11] 周鹏宇, 张庆礼, 杨华军, 宁凯杰, 孙敦陆, 罗建乔, 殷绍唐. 5 at%Yb3+: YNbO4 的提拉法晶体生长和光谱特性. 物理学报, 2012, 61(22): 228103. doi: 10.7498/aps.61.228103
    [12] 宋坤, 柴常春, 杨银堂, 贾护军, 陈斌, 马振洋. 改进型异质栅对深亚微米栅长碳化硅MESFET特性影响. 物理学报, 2012, 61(17): 177201. doi: 10.7498/aps.61.177201
    [13] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究. 物理学报, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [14] 邢辉, 陈长乐, 金克新, 谭兴毅, 范飞. 相场晶体法模拟过冷熔体中的晶体生长. 物理学报, 2010, 59(11): 8218-8225. doi: 10.7498/aps.59.8218
    [15] 陈育祥, 谢国锋, 马颖, 周益春. BaTiO3晶体结构及弹性的分子动力学模拟. 物理学报, 2009, 58(6): 4085-4089. doi: 10.7498/aps.58.4085
    [16] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [17] 林 涛, 陈治明, 李 佳, 李连碧, 李青民, 蒲红斌. 6H碳化硅衬底上硅碳锗薄膜的生长特性研究. 物理学报, 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [18] 于 威, 何 杰, 孙运涛, 朱海丰, 韩 理, 傅广生. 碳化硅薄膜脉冲激光晶化特性研究. 物理学报, 2004, 53(6): 1930-1934. doi: 10.7498/aps.53.1930
    [19] 汤晓燕, 张义门, 张鹤鸣, 张玉明, 戴显英, 胡辉勇. 碳化硅基上3UCVD淀积二氧化硅及其C-V性能测试. 物理学报, 2004, 53(9): 3225-3228. doi: 10.7498/aps.53.3225
    [20] 王剑屏, 郝跃, 彭军, 朱作云, 张永华. 蓝宝石衬底上异质外延生长碳化硅薄膜的研究. 物理学报, 2002, 51(8): 1793-1797. doi: 10.7498/aps.51.1793
计量
  • 文章访问数:  14959
  • PDF下载量:  1274
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-12
  • 修回日期:  2011-05-07
  • 刊出日期:  2012-01-05

MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为

  • 1. 南昌大学材料科学与工程学院, 南昌 330031
    基金项目: 国家自然科学基金(批准号:10502024)资助的课题.

摘要: 运用分子动力学方法对比模拟研究了碳化硅的体熔化、表面熔化和晶体生长过程.分别采用MEAM 势和Tersoff势两种势函数描述碳化硅.结果表明:体熔化时,两种势函数描述的SiC的原子平均能量、Lindemann指数和结构有序参数与温度的变化关系相似,但MEAM势对应的体熔点(4250 K)比Tersoff势(4750 K) 的要高.表面熔化时,两种势函数描述的SiC在相同的过热度下熔化速度相近;而在相同的温度条件下,MEAM 作用的SiC表面熔化速度更快.这是由于MEAM势SiC的热力学熔点(3338 K)低于Tersoff势SiC的热力学熔点(3430 K)的缘故.两种势函数作用的SiC在晶体生长方面差异很大.MEAM势SiC的晶体生长速度与过冷度有关, 过冷度约为400 K时晶体生长速度最快.但Tersoff势SiC晶体却在过冷度为01000 K的范围内均不能生长. 综合考虑,MEAM势比Tersoff势能更好地描述碳化硅的熔化和凝固行为.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回