搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂辉石/碳化硅复相陶瓷材料的制备与性能

鲁媛媛 鹿桂花 周恒为 黄以能

引用本文:
Citation:

锂辉石/碳化硅复相陶瓷材料的制备与性能

鲁媛媛, 鹿桂花, 周恒为, 黄以能

Preparation and properties of spodumene/silicon carbide composite ceramic materials

Lu Yuan-Yuan, Lu Gui-Hua, Zhou Heng-Wei, Huang Yi-Neng
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 通过在碳化硅中添加高纯度近零膨胀材料β-锂辉石, 采用无压液相烧结合成了锂辉石/碳化硅复相陶瓷. 研究表明: 适当添加β-锂辉石能促进碳化硅烧结, 复相陶瓷体密度和杨氏模量随β-锂辉石含量的添加呈先升高后降低趋势, 并在–150—480 ℃温度区间获得较低的热膨胀系数. 研究结果对于开发热膨胀系数小、烧结温度较低的碳化硅复相陶瓷具有重要的参考意义.
    Silicon carbide (SiC) is widely used due to the lower coefficient of thermal expansion (CTE), high thermal conductivity and excellent mechanical properties. However, the self-diffusion coefficient of SiC relative to that of oxide ceramics is very low, it is difficult to sinter at lower temperature. The β-spodumene has ultra low or even negative thermal expansion coefficient combined with good thermal and chemical durability, which melts at 1423 ℃. Accordingly, the present study focuses on the use of β-spodumene as a flux at lower sintering temperature and the preparation of lower CET composite ceramics. The effects of spodumene on the sintering behavior, phase relations, thermal expansion and mechanical properties of spodumene/silicon carbide composites are discussed.A high pure β-spodumene LiAlSi2O6 compound with nearly zero thermal expansion coefficient is synthesized via solid phase sintering. Spodumene/silicon carbide composites are fabricated by the adding 25, 30, 35 and 40 mass% synthesized β-spodumene powder to 75, 70, 65 and 60 mass% α-SiC matrix, respectively. Both β-spodumene and SiC are fabricated by conventional pressureless liquid sintering technique, and the batches are uniaxially pressed into discs and rectangular bars, then sintered at 1550 ℃ for 2 h in an Ar atmosphere.The results show that the SiC and β-spodumene do not react during sintering, and the β-spodumene changes from tetragonal phase into hexagonal phase, the cell volume has a considerable shrinkage. A certain amount of liquid phase can help to enhance the density, improve Young’s modulus and promote the sintering behavior of SiC. When the feedstock contains 35% β-spodumene, the Young’s modulus reaches to (204.2 ± 0.5) GPa. Excess porosity is formed when liquid phase is too much during sintering, The Young's modulus of the sample 40SP is (119.6 ± 0.5) GPa. It is determined that the Young’s modulus of these materials are affected by porosity and internal microcracks. This study indicates that the content of β-spodumene and porosity are the dominant factors to control the CET of composites, but the porosity has a stronger effect. Besides, the microcracks, which are formed by the interaction of various internal stresses, are also an impotant factor. The materials with nearly zero thermal expansion are developed in a lower temperature range from –150 ℃ to 25 ℃, the spodumene content in the most stable composite reaches 40 mass%, and the CET of composite is close to that of Si (α25 ℃ = 2.59 × 10–6–1) in a temperature range of 25–480 ℃.
      通信作者: 周恒为, zhw33221@163.com ; 黄以能, ynhuang@nju.edu.cn
    • 基金项目: 国家级-国家自然科学基金地区科学基金(11664042)
      Corresponding author: Zhou Heng-Wei, zhw33221@163.com ; Huang Yi-Neng, ynhuang@nju.edu.cn
    [1]

    Mandal S, Chakrabarti S, Das S K, Ghatak S 2007 Ceram. Int. 33 123Google Scholar

    [2]

    Abdel-Fattah W I, Abdellah R 1997 Ceram. Int. 23 463Google Scholar

    [3]

    Hummel F A 1951 J. Am. Ceram. Soc. 34 235Google Scholar

    [4]

    Roy R, Agrawal D K, Mckinstry H A 2003 Annu. Rev. Mater. Res. 19 59Google Scholar

    [5]

    Ramirez I J, Matsumaru K, Ishizaki K 2006 J. Ceram. Soc. Jpn. 114 1111Google Scholar

    [6]

    Ono T, Matsumaru K, Juárez-Ramírez I, Torres-Martínez L M, Ishizaki K 2009 Mater. Sci. Forum 620–622 715Google Scholar

    [7]

    Wang B, Yang X H, Zeng D J, Yang J F, Ishizaki K, Niihara K 2014 J. Eur. Ceram. Soc. 34 97Google Scholar

    [8]

    García-Moreno O, Fernández A, Torrecillas R 2010 J. Eur. Ceram. Soc. 30 3219Google Scholar

    [9]

    Iwashima M, Nakano H, Ogata T O, Tsurumi T, Urabe K 2003 J. Ceram. Soc. Jpn. 111 430Google Scholar

    [10]

    Iguchi M, Umezu M, Kataoka M, Nakamura H, Ishii M 2006 Key Eng. Mater. 317-318 177Google Scholar

    [11]

    Welsch A M, Murawski D, Prekajski M, Vulic P, Kremenovic A 2015 Phys. Chem. Miner. 42 413Google Scholar

    [12]

    Li C T 1968 Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 127 327Google Scholar

    [13]

    Ostertag W, Fischer G R, Williams J P 1968 J. Am. Ceram. Soc. 51 651Google Scholar

    [14]

    Manurung P, Low I M, O’Connor B H, Kennedy S 2005 Mater. Res. Bull. 40 2047Google Scholar

    [15]

    曹爱红 2006 中国陶瓷 42 30Google Scholar

    Cao A H 2006 Chn. Ceram. 42 30Google Scholar

    [16]

    Awaad M, Mӧrtel H, Naga S M 2005 J. Mater. Sci. -Mater. Electron. 16 377Google Scholar

    [17]

    Bayuseno A P, Latella B A, O'Connor B H 1999 J. Am. Ceram. Soc. 82 819Google Scholar

    [18]

    Latella B A, Burton G R, O'Connort B H 1995 J. Am. Ceram. Soc. 78 1895Google Scholar

    [19]

    Naga S M, El-Maghraby A A, Hassan A M 2016 Ceram. Int. 42 12161Google Scholar

    [20]

    Low I M, Mathews E, Garrod T, Zhou D, Phillip D N, Pillai X M 1997 J. Mater. Sci. 32 3807Google Scholar

    [21]

    Shi C G, Low I M 1998 Mater. Lett. 36 118Google Scholar

    [22]

    Halbig M C, Singh M, Tsuda H 2012 Int. J. Appl. Ceram. Technol. 9 677Google Scholar

    [23]

    赵赞良, 唐政维, 蔡雪梅, 李秋俊, 张宪力 2006 装备制造技术 4 81Google Scholar

    Zhao Z L, Tang Z W, Cai X M, Li Q J, Zhang X L 2006 Equip. Manuf. Technol. 4 81Google Scholar

    [24]

    赵更一 2016 硕士学位论文 (黑龙江: 哈尔滨工业大学)

    Zhao G Y 2016 M.S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [25]

    吴清仁, 吴建青, 文壁璇 1994 94'全国结构陶瓷、功能陶瓷、金属/陶瓷封接学术会议论文集 (中国北京) 10月20—24日 1994 p174

    Wu Q R, Wu J Q, Wen B X 1994 Proceedings of the 94' National symposium on Structural Ceramics, Functional Ceramics, Metal/Ceramic Sealing Beijing, China, October 20–24, 1994 p174 (in Chinese)

    [26]

    黄智恒, 贾德昌, 杨治华, 周玉 2004 材料科学与工艺 12 103Google Scholar

    Huang Z H, Jia D C, Yang Z H, Zhou Y 2004 Mater. Sci. Technol. 12 103Google Scholar

    [27]

    Liang H Q, Yao X M, Liu X J, Huang Z R 2014 Mater. Des. 56 1009Google Scholar

    [28]

    Li C T 1970 Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 132 118Google Scholar

    [29]

    Kobayashi H, Ishibashi N, Akiba T, Mitamura T 1990 J. Ceram. Soc. Jpn. 98 1023Google Scholar

    [30]

    Xia L, Wang X Y, Wen G W, Zhong B, Song L 2012 Ceram. Int. 38 5315Google Scholar

    [31]

    Okada Y, Tokumaru Y 1984 J. Appl. Phys. 56 314Google Scholar

    [32]

    喻佑华, 刘映珍 1995 陶瓷研究 10 180

    Yu Y H, Liu Y Z 1995 Ceram. Stud. J. 10 180

  • 图 1  β-锂辉石XRD图谱 (a) β-LiAlSi2O6; (b) ICSD No. 01-071-2058

    Fig. 1.  XRD patterns of β-spodumene: (a) β-LiAlSi2O6; (b) ICSD No. 01-071-2058

    图 2  锂辉石/碳化硅复相陶瓷XRD图谱

    Fig. 2.  XRD patterns of spodumene/silicon carbide composi-tes.

    图 3  1550 ℃烧结前后试样40SP的XRD图谱

    Fig. 3.  XRD patterns of 40SP sample in the starting and the sintered at 1550 ℃.

    图 4  锂辉石/碳化硅复相陶瓷断面显微形貌 (a) 25SP; (b) 30SP; (c) 35SP; (d) 40SP

    Fig. 4.  SEM micrographs of the fracture surface of spodumene/silicon composites: (a) 25SP; (b) 30SP; (c) 35SP; (d) 40SP.

    图 5  锂辉石/碳化硅复相陶瓷的气孔率和杨氏模量

    Fig. 5.  Apparent porosity and Young’s modulus of the spodumene/silicon carbide composites.

    图 6  锂辉石/碳化硅复相陶瓷热膨胀率随温度的变化关系

    Fig. 6.  Expansion versus temperature of the spodumene/sili-con carbide composites.

    图 7  35 SP复相陶瓷的微裂纹

    Fig. 7.  Microcrack of 35 SP composite.

    表 1  LAS体系一些重要物质的平均线热膨胀系数

    Table 1.  Average linear thermal expansion coefficient (CET) of some important materials based on LAS system.

    System/materialCET/10–6–1Temperature range/℃
    Li2O·Al2O3·2SiO2 (LiAlSiO4, Eucryptite)–6.225—800
    Li2O·Al2O3·3SiO2 (Solid solution of eucryptite)Negative near zero CET25—1000
    Li2O·Al2O3·4SiO2 (β-LiAlSi2O6, β-Spodumene)0.925—1000
    Li2O·Al2O3·6SiO2 (LiAlSi3O8, Virgilite)0.525—1000
    Li2O·Al2O3·8SiO2 (LiAlSi4O10, Petalite)0.325—1000
    Li2O·Al2O3·10SiO20.525—1000
    LAS + TiO2 (Pyroceram)–0.07—0.30
    LAS + TiO2 + ZrO2 (Cer-Vit)0.05—0.30
    Hercuvit (LAS-based transparentlow expanding glass-ceramic)0—0.3
    下载: 导出CSV

    表 2  四方相β-锂辉石和六方相锂辉石原子键长、晶胞体积和密度

    Table 2.  The atomic bond lengths, cell volume and density of tetragonal and hexagonal spodumene.

    PhaseSi, Al—O/ÅLi—O/ ÅSi, Al—Li/ÅO—O (Li tetrahedra)/ÅO—O (Si, Al tetrahedra)/ÅV3Dc/g·cm–3
    Te-SP1.6432.0812.628/2.7103.3392.682520.6712.374
    He-SP1.6412.0682.6093.3372.679128.7902.399
    下载: 导出CSV

    表 3  锂辉石/碳化硅复相陶瓷材料的性能

    Table 3.  Characteristics of spodumene/ silicon carbide composites.

    β–Spodumene content/
    mass%
    Apparent porosity/
    %
    Bulk density/
    g·cm–3
    Young’s modulus/
    GPa
    α (–150—25 ℃)/
    –1
    α (25—480 ℃)/
    –1
    SP25381.8195.3 ± 0.10.23 × 10–61.83 × 10–6
    SP30321.82123.8 ± 0.40.60 × 10–62.95 × 10–6
    SP35192.24204.2 ± 0.50.53 × 10–65.71 × 10–6
    SP40291.95119.6 ± 0.51.14 × 10–62.50 × 10–6
    下载: 导出CSV
  • [1]

    Mandal S, Chakrabarti S, Das S K, Ghatak S 2007 Ceram. Int. 33 123Google Scholar

    [2]

    Abdel-Fattah W I, Abdellah R 1997 Ceram. Int. 23 463Google Scholar

    [3]

    Hummel F A 1951 J. Am. Ceram. Soc. 34 235Google Scholar

    [4]

    Roy R, Agrawal D K, Mckinstry H A 2003 Annu. Rev. Mater. Res. 19 59Google Scholar

    [5]

    Ramirez I J, Matsumaru K, Ishizaki K 2006 J. Ceram. Soc. Jpn. 114 1111Google Scholar

    [6]

    Ono T, Matsumaru K, Juárez-Ramírez I, Torres-Martínez L M, Ishizaki K 2009 Mater. Sci. Forum 620–622 715Google Scholar

    [7]

    Wang B, Yang X H, Zeng D J, Yang J F, Ishizaki K, Niihara K 2014 J. Eur. Ceram. Soc. 34 97Google Scholar

    [8]

    García-Moreno O, Fernández A, Torrecillas R 2010 J. Eur. Ceram. Soc. 30 3219Google Scholar

    [9]

    Iwashima M, Nakano H, Ogata T O, Tsurumi T, Urabe K 2003 J. Ceram. Soc. Jpn. 111 430Google Scholar

    [10]

    Iguchi M, Umezu M, Kataoka M, Nakamura H, Ishii M 2006 Key Eng. Mater. 317-318 177Google Scholar

    [11]

    Welsch A M, Murawski D, Prekajski M, Vulic P, Kremenovic A 2015 Phys. Chem. Miner. 42 413Google Scholar

    [12]

    Li C T 1968 Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 127 327Google Scholar

    [13]

    Ostertag W, Fischer G R, Williams J P 1968 J. Am. Ceram. Soc. 51 651Google Scholar

    [14]

    Manurung P, Low I M, O’Connor B H, Kennedy S 2005 Mater. Res. Bull. 40 2047Google Scholar

    [15]

    曹爱红 2006 中国陶瓷 42 30Google Scholar

    Cao A H 2006 Chn. Ceram. 42 30Google Scholar

    [16]

    Awaad M, Mӧrtel H, Naga S M 2005 J. Mater. Sci. -Mater. Electron. 16 377Google Scholar

    [17]

    Bayuseno A P, Latella B A, O'Connor B H 1999 J. Am. Ceram. Soc. 82 819Google Scholar

    [18]

    Latella B A, Burton G R, O'Connort B H 1995 J. Am. Ceram. Soc. 78 1895Google Scholar

    [19]

    Naga S M, El-Maghraby A A, Hassan A M 2016 Ceram. Int. 42 12161Google Scholar

    [20]

    Low I M, Mathews E, Garrod T, Zhou D, Phillip D N, Pillai X M 1997 J. Mater. Sci. 32 3807Google Scholar

    [21]

    Shi C G, Low I M 1998 Mater. Lett. 36 118Google Scholar

    [22]

    Halbig M C, Singh M, Tsuda H 2012 Int. J. Appl. Ceram. Technol. 9 677Google Scholar

    [23]

    赵赞良, 唐政维, 蔡雪梅, 李秋俊, 张宪力 2006 装备制造技术 4 81Google Scholar

    Zhao Z L, Tang Z W, Cai X M, Li Q J, Zhang X L 2006 Equip. Manuf. Technol. 4 81Google Scholar

    [24]

    赵更一 2016 硕士学位论文 (黑龙江: 哈尔滨工业大学)

    Zhao G Y 2016 M.S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [25]

    吴清仁, 吴建青, 文壁璇 1994 94'全国结构陶瓷、功能陶瓷、金属/陶瓷封接学术会议论文集 (中国北京) 10月20—24日 1994 p174

    Wu Q R, Wu J Q, Wen B X 1994 Proceedings of the 94' National symposium on Structural Ceramics, Functional Ceramics, Metal/Ceramic Sealing Beijing, China, October 20–24, 1994 p174 (in Chinese)

    [26]

    黄智恒, 贾德昌, 杨治华, 周玉 2004 材料科学与工艺 12 103Google Scholar

    Huang Z H, Jia D C, Yang Z H, Zhou Y 2004 Mater. Sci. Technol. 12 103Google Scholar

    [27]

    Liang H Q, Yao X M, Liu X J, Huang Z R 2014 Mater. Des. 56 1009Google Scholar

    [28]

    Li C T 1970 Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 132 118Google Scholar

    [29]

    Kobayashi H, Ishibashi N, Akiba T, Mitamura T 1990 J. Ceram. Soc. Jpn. 98 1023Google Scholar

    [30]

    Xia L, Wang X Y, Wen G W, Zhong B, Song L 2012 Ceram. Int. 38 5315Google Scholar

    [31]

    Okada Y, Tokumaru Y 1984 J. Appl. Phys. 56 314Google Scholar

    [32]

    喻佑华, 刘映珍 1995 陶瓷研究 10 180

    Yu Y H, Liu Y Z 1995 Ceram. Stud. J. 10 180

  • [1] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [2] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊(Jun Wang), 邹 宇, 付宝勤(Baoqin Fu). 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211434
    [3] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失. 物理学报, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [4] 李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威. 金刚石-碳化硅超硬复合材料的冲击强度. 物理学报, 2019, 68(15): 158101. doi: 10.7498/aps.68.20190350
    [5] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [6] 程正富, 郑瑞伦. 非简谐振动对石墨烯杨氏模量与声子频率的影响. 物理学报, 2016, 65(10): 104701. doi: 10.7498/aps.65.104701
    [7] 吕焕玲, 王静. 掺杂单晶硅纳米薄膜杨氏模量的多尺度理论模型. 物理学报, 2015, 64(23): 236103. doi: 10.7498/aps.64.236103
    [8] 宋坤, 柴常春, 杨银堂, 贾护军, 陈斌, 马振洋. 改进型异质栅对深亚微米栅长碳化硅MESFET特性影响. 物理学报, 2012, 61(17): 177201. doi: 10.7498/aps.61.177201
    [9] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究. 物理学报, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [10] 周耐根, 洪涛, 周浪. MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为. 物理学报, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [11] 周婷婷, 黄风雷. HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟. 物理学报, 2012, 61(24): 246501. doi: 10.7498/aps.61.246501
    [12] 林 涛, 陈治明, 李 佳, 李连碧, 李青民, 蒲红斌. 6H碳化硅衬底上硅碳锗薄膜的生长特性研究. 物理学报, 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [13] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质. 物理学报, 2007, 56(10): 5969-5973. doi: 10.7498/aps.56.5969
    [14] 袁剑辉, 程玉民. 单壁碳纳米管杨氏模量的掺杂效应. 物理学报, 2007, 56(8): 4810-4816. doi: 10.7498/aps.56.4810
    [15] 杨海波, 胡 明, 张 伟, 张绪瑞, 李德军, 王明霞. 基于纳米压痕法的多孔硅硬度及杨氏模量与微观结构关系研究. 物理学报, 2007, 56(7): 4032-4038. doi: 10.7498/aps.56.4032
    [16] 蒋中英, 郁伟中, 夏元复. 三嵌段共聚物SEBS中自由体积行为的温度及e+辐照时间依赖性的研究. 物理学报, 2005, 54(7): 3434-3438. doi: 10.7498/aps.54.3434
    [17] 于 威, 何 杰, 孙运涛, 朱海丰, 韩 理, 傅广生. 碳化硅薄膜脉冲激光晶化特性研究. 物理学报, 2004, 53(6): 1930-1934. doi: 10.7498/aps.53.1930
    [18] 汤晓燕, 张义门, 张鹤鸣, 张玉明, 戴显英, 胡辉勇. 碳化硅基上3UCVD淀积二氧化硅及其C-V性能测试. 物理学报, 2004, 53(9): 3225-3228. doi: 10.7498/aps.53.3225
    [19] 王剑屏, 郝跃, 彭军, 朱作云, 张永华. 蓝宝石衬底上异质外延生长碳化硅薄膜的研究. 物理学报, 2002, 51(8): 1793-1797. doi: 10.7498/aps.51.1793
    [20] 李晓杰. 热膨胀型固体物态方程. 物理学报, 2002, 51(5): 1098-1102. doi: 10.7498/aps.51.1098
计量
  • 文章访问数:  11483
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-18
  • 修回日期:  2020-03-22
  • 刊出日期:  2020-06-05

/

返回文章
返回