搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化硅中点缺陷对热传导性能影响的分子动力学研究

王甫 周毅 高士鑫 段振刚 孙志鹏 汪俊 邹宇 付宝勤

引用本文:
Citation:

碳化硅中点缺陷对热传导性能影响的分子动力学研究

王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤

Molecular dynamics study of effects of point defects on thermal conductivity in cubic silicon carbide

Wang Fu, Zhou Yi, Gao Shi-Xin, Duan Zhen-Gang, Sun Zhi-Peng, Wang Jun, Zou Yu, Fu Bao-Qin
PDF
HTML
导出引用
  • 碳化硅(SiC)由于性能优异, 已广泛应用于核技术领域. 在辐照环境下, 载能入射粒子可使材料中的原子偏离晶体格点位置, 进而产生过饱和的空位、间隙原子、错位原子等点缺陷, 这些缺陷将改变材料的热物性能, 劣化材料的服役性能. 因此, 本文利用平衡分子动力学方法(Green-Kubo方法)采用Tersoff型势函数研究了点缺陷对立方碳化硅(β-SiC或 3C-SiC)热传导性能的影响规律. 研究过程中考虑的点缺陷包括: Si间隙原子(SiI)、Si空位(SiV)、Si错位原子(SiC)、C间隙原子(CI)、C空位(CV)和C错位原子(CSi). 研究结果表明, 热导率(λ)随点缺陷浓度(c)的增加而减小. 在研究的点缺陷浓度范围(点缺陷与格点的比例范围为0.2%—1.6%), 额外热阻率(ΔR = RdefectRperfect, R = 1/λ, Rdefect为含缺陷材料的热阻率, Rperfect为不含缺陷材料的热阻率)与点缺陷的浓度呈线性关系, 其斜率为热阻率系数. 研究表明: 空位和间隙原子的热阻率系数高于错位原子的热阻率系数; 高温下点缺陷的热阻率系数高于低温下点缺陷的热阻率系数; Si空位和Si间隙原子的热阻率系数高于C空位和C间隙原子的热阻率系数. 这些结果有助于预测及调控辐照条件下碳化硅的热传导性能.
    Silicon carbide (SiC) has been widely used in nuclear technology due to its excellent properties. In the irradiation environment, the energetic incident particles can cause the atoms in the material to deviate from the position of the crystal lattice, thereby producing the vacancies, interstitial atoms, anti-site atoms and other point defects. These defects will change the thermal properties of the material and degrade the service performance of the material. Therefore, in this work the equilibrium molecular dynamics method (Green-Kubo method) is used to study the effect of point defects on the heat transfer properties of cubic SiC (β-SiC or 3C-SiC) with the help of the Tersoff-type potential. The point defects considered include Si interstitial atoms (SiI), Si vacancies (SiV), Si anti-site atoms (SiC), C interstitial atoms (CI), C vacancies (CV) and C anti-site atoms (CSi). It is found that the thermal conductivity (λ) decreases with the increase of the point defect concentration (c). The excessive thermal resistance (ΔR = Rdefect Rperfect, R = 1/λ, Rdefect is the thermal resistance of the defective material, and Rperfect is the thermal resistivity of the material without defects) has a linear relation with the concentration of point defects in the considered range (0.2%–1.6%), and its slope is the thermal resistivity coefficient. It can be found that the thermal resistivity coefficient of vacancy and interstitial atoms are higher than that of anti-site atoms; the thermal resistivity coefficient of point defects at high temperature is higher than at low temperature; the thermal resistivity coefficient of Si vacancies and Si interstitial atoms are higher than that of C vacancies and C interstitial atoms. These results are helpful in predicting the thermal conductivity of silicon carbide under irradiation and controlling the thermal conductivity of silicon carbide.
      通信作者: 付宝勤, bqfu@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51501119)和中央高校基本科研业务费专项资金资助的课题
      Corresponding author: Fu Bao-Qin, bqfu@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51501119) and the Fundamental Research Fund for the Central Universities, China
    [1]

    Kawamura T, Hori D, Kangawa Y, Kakimoto K, Yoshimura M, Mori Y 2008 Jpn. J. Appl. Phys. 47 8898Google Scholar

    [2]

    Čížek J, Kalivodová J, Janeček M, Stráský J, Srba O, Macková A 2021 Metals 11 76Google Scholar

    [3]

    Katoh Y, Snead L L 2019 J. Nucl. Mater. 526 151849Google Scholar

    [4]

    何培, 姚伟志, 吕建明, 张向东 2018 材料工程 46 19Google Scholar

    Pei H, Yao W Z, Lü J M, Zhang X D 2018 J. Mater. Eng. 46 19Google Scholar

    [5]

    盖志刚, 罗崇泰, 陈焘, 张平 2010 真空与低温 16 1

    Gai Z G, Luo C T, Chen T, Zhang P 2010 Vac. Cryog. 16 1

    [6]

    Starke U, Schardt J, Bernhardt J, Heinz K 1999 Surf. Rev. Lett. 6 1129Google Scholar

    [7]

    Ohtani N, Takahashi J, Katsuno M, Yashiro H, Kanaya M 1998 Electron. Commun. Jpn. 81 8Google Scholar

    [8]

    Snead L L, Nozawa T, Katoh Y, Byun T-S, Kondo S, Petti D A 2007 J. Nucl. Mater. 371 329Google Scholar

    [9]

    Tan L A T R, Hunn J D, Miller J H 2008 J. Nucl. Mater. 372 400Google Scholar

    [10]

    Katoh Y, Hashimoto N, Kondo S, Snead L L, Kohyama A 2006 J. Nucl. Mater. 351 228Google Scholar

    [11]

    Devanathan R, Weber W J, de la Rubia D T 1998 Nucl. Instrum. Methods Phys. Res., Sect. B 141 118Google Scholar

    [12]

    Ran Q, Zhou Y, Zou Y, Wang J, Duan Z, Sun Z, Fu B, Gao S 2021 Nucl. Mater. Energy 27 100957Google Scholar

    [13]

    Snead L L, Zinkle S J, White D P 2005 J. Nucl. Mater. 340 187Google Scholar

    [14]

    Shen G, Chen D, Tang K, Qian Y, Zhang S 2003 Chem. Phys. Lett. 375 177Google Scholar

    [15]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar

    [16]

    Fu B Q, Lai W, Yuan Y, Xu H, Liu W 2012 J. Nucl. Mater. 427 268Google Scholar

    [17]

    Crocombette J P, Dumazer G, Hoang N Q, Gao F, Weber W J 2007 J. Appl. Phys. 101 023527Google Scholar

    [18]

    Lyver J W, Blaisten-Barojas E 2011 J. Comput. Theor. Nanosci. 8 529Google Scholar

    [19]

    Sellan D P, Landry E S, Turney J E, McGaughey A J H, Amon C H 2010 Phys. Rev. B 81 214305Google Scholar

    [20]

    Kubo R 1957 J. Phys. Soc. Jpn. 12 570Google Scholar

    [21]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [22]

    Tersoff J 1988 Phys. Rev. B 38 9902Google Scholar

    [23]

    Erhart P, Albe K 2005 Phys. Rev. B 71 035211Google Scholar

    [24]

    Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177Google Scholar

    [25]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [26]

    Tuckerman M E, Alejandre J, López-Rendón R, Jochim A L, Martyna G J 2006 J. Phys. A:Math. Gen. 39 5629Google Scholar

    [27]

    Taylor R E, Groot, Ferrier J 1993 Thermophysical Properties of CVD SiC (Thermophysical Properties Research Laboratory Report, School of Mechanical Engineering, Purdue University) TRPL 1336

    [28]

    Li J, Porter L, Yip S 1998 J. Nucl. Mater. 255 139Google Scholar

    [29]

    Chen X K, Chen K Q 2020 J. Phys. Condens. Matter 32 153002Google Scholar

    [30]

    Crocombette J P, Proville L 2011 Appl. Phys. Lett. 98 191905Google Scholar

    [31]

    黄昆 2009 固体物理学 (北京: 北京大学出版社) 第99页

    Huang K 2009 Solid State Physics (Beijing: Peking University Press) p99 (in Chinese)

    [32]

    Kim Y A, Kamio S, Tajiri T, Hayashi T, Song S M, Endo M, Terrones M, Dresselhaus M S 2007 Appl. Phys. Lett. 90 093125Google Scholar

    [33]

    Callaway J, Baeyer H V 1960 Phys. Rev. 120 1149Google Scholar

    [34]

    Gurunathan R, Hanus R, Dylla M, Katre A, Snyder G J 2020 Phys. Rev. Appl. 13 034011Google Scholar

  • 图 1  (a)微观热流密度(J )随时间的变化关系; (b)微观热流密度的时间自相关函数(HFACF)随时间的变化关系. 温度为1500 K, 完美超胞的尺寸为6a × 6a × 6a

    Fig. 1.  (a) Relationship of microscopic heat flux (J ) with time; (b) relationship of heat flux autocorrelation function (HFACF) with time. The temperature is 1500 K, the size of the perfect supercell is 6a × 6a × 6a.

    图 2  尺寸对热导率的影响

    Fig. 2.  Effect of size on the thermal conductivity.

    图 3  含有点缺陷的SiC超胞热导率(λ)与点缺陷浓度(c, 相当于点缺陷与格点的比例)的关系 (a) 600 K; (b) 1500 K

    Fig. 3.  Relationship between the thermal conductivity (λ) of SiC supercells containing point defects and the concentration of point defects (c, equivalent to the ratio of point defects to lattice points): (a) 600 K; (b) 1500 K.

    图 4  含有点缺陷的SiC超胞的额外热阻率(ΔR)与点缺陷浓度(c, 相当于点缺陷与格点的比例)的关系 (a) 600 K; (b) 1500 K

    Fig. 4.  Relationship between the excess thermal resistance (ΔR) of SiC supercells containing point defects and the concentration of point defects (c, equivalent to the ratio of point defects to lattice points): (a) 600 K; (b) 1500 K.

    图 5  各种点缺陷不同温度下的热阻率系数l (单位为mK/W)

    Fig. 5.  Thermal resistivity coefficient l (in mK/W) of various point defects at different temperatures.

  • [1]

    Kawamura T, Hori D, Kangawa Y, Kakimoto K, Yoshimura M, Mori Y 2008 Jpn. J. Appl. Phys. 47 8898Google Scholar

    [2]

    Čížek J, Kalivodová J, Janeček M, Stráský J, Srba O, Macková A 2021 Metals 11 76Google Scholar

    [3]

    Katoh Y, Snead L L 2019 J. Nucl. Mater. 526 151849Google Scholar

    [4]

    何培, 姚伟志, 吕建明, 张向东 2018 材料工程 46 19Google Scholar

    Pei H, Yao W Z, Lü J M, Zhang X D 2018 J. Mater. Eng. 46 19Google Scholar

    [5]

    盖志刚, 罗崇泰, 陈焘, 张平 2010 真空与低温 16 1

    Gai Z G, Luo C T, Chen T, Zhang P 2010 Vac. Cryog. 16 1

    [6]

    Starke U, Schardt J, Bernhardt J, Heinz K 1999 Surf. Rev. Lett. 6 1129Google Scholar

    [7]

    Ohtani N, Takahashi J, Katsuno M, Yashiro H, Kanaya M 1998 Electron. Commun. Jpn. 81 8Google Scholar

    [8]

    Snead L L, Nozawa T, Katoh Y, Byun T-S, Kondo S, Petti D A 2007 J. Nucl. Mater. 371 329Google Scholar

    [9]

    Tan L A T R, Hunn J D, Miller J H 2008 J. Nucl. Mater. 372 400Google Scholar

    [10]

    Katoh Y, Hashimoto N, Kondo S, Snead L L, Kohyama A 2006 J. Nucl. Mater. 351 228Google Scholar

    [11]

    Devanathan R, Weber W J, de la Rubia D T 1998 Nucl. Instrum. Methods Phys. Res., Sect. B 141 118Google Scholar

    [12]

    Ran Q, Zhou Y, Zou Y, Wang J, Duan Z, Sun Z, Fu B, Gao S 2021 Nucl. Mater. Energy 27 100957Google Scholar

    [13]

    Snead L L, Zinkle S J, White D P 2005 J. Nucl. Mater. 340 187Google Scholar

    [14]

    Shen G, Chen D, Tang K, Qian Y, Zhang S 2003 Chem. Phys. Lett. 375 177Google Scholar

    [15]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar

    [16]

    Fu B Q, Lai W, Yuan Y, Xu H, Liu W 2012 J. Nucl. Mater. 427 268Google Scholar

    [17]

    Crocombette J P, Dumazer G, Hoang N Q, Gao F, Weber W J 2007 J. Appl. Phys. 101 023527Google Scholar

    [18]

    Lyver J W, Blaisten-Barojas E 2011 J. Comput. Theor. Nanosci. 8 529Google Scholar

    [19]

    Sellan D P, Landry E S, Turney J E, McGaughey A J H, Amon C H 2010 Phys. Rev. B 81 214305Google Scholar

    [20]

    Kubo R 1957 J. Phys. Soc. Jpn. 12 570Google Scholar

    [21]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [22]

    Tersoff J 1988 Phys. Rev. B 38 9902Google Scholar

    [23]

    Erhart P, Albe K 2005 Phys. Rev. B 71 035211Google Scholar

    [24]

    Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177Google Scholar

    [25]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [26]

    Tuckerman M E, Alejandre J, López-Rendón R, Jochim A L, Martyna G J 2006 J. Phys. A:Math. Gen. 39 5629Google Scholar

    [27]

    Taylor R E, Groot, Ferrier J 1993 Thermophysical Properties of CVD SiC (Thermophysical Properties Research Laboratory Report, School of Mechanical Engineering, Purdue University) TRPL 1336

    [28]

    Li J, Porter L, Yip S 1998 J. Nucl. Mater. 255 139Google Scholar

    [29]

    Chen X K, Chen K Q 2020 J. Phys. Condens. Matter 32 153002Google Scholar

    [30]

    Crocombette J P, Proville L 2011 Appl. Phys. Lett. 98 191905Google Scholar

    [31]

    黄昆 2009 固体物理学 (北京: 北京大学出版社) 第99页

    Huang K 2009 Solid State Physics (Beijing: Peking University Press) p99 (in Chinese)

    [32]

    Kim Y A, Kamio S, Tajiri T, Hayashi T, Song S M, Endo M, Terrones M, Dresselhaus M S 2007 Appl. Phys. Lett. 90 093125Google Scholar

    [33]

    Callaway J, Baeyer H V 1960 Phys. Rev. 120 1149Google Scholar

    [34]

    Gurunathan R, Hanus R, Dylla M, Katre A, Snyder G J 2020 Phys. Rev. Appl. 13 034011Google Scholar

  • [1] 李婷, 毕晓月, 孔婧文. 剪切形变下磷烯的力学和热学性能. 物理学报, 2023, 72(12): 126201. doi: 10.7498/aps.72.20230084
    [2] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟. 物理学报, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [3] 李耀隆, 李哲, 李松远, 张任良. 层间共价键和拉伸应变对双层石墨烯纳米带热导率的调控. 物理学报, 2023, 72(24): 243101. doi: 10.7498/aps.72.20231230
    [4] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊(Jun Wang), 邹 宇, 付宝勤(Baoqin Fu). 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211434
    [5] 徐文雪, 梁新刚, 徐向华, 祝渊. 交联对硅橡胶热导率影响的分子动力学模拟. 物理学报, 2020, 69(19): 196601. doi: 10.7498/aps.69.20200737
    [6] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性. 物理学报, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [7] 贺慧芳, 陈志权. 用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响. 物理学报, 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [8] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [9] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [10] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [11] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [12] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算. 物理学报, 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [13] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究. 物理学报, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [14] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [15] 李威, 冯妍卉, 陈阳, 张欣欣. 碳纳米管中点缺陷对热导率影响的正交试验模拟分析. 物理学报, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [16] 张雷明, 夏辉. 点缺陷对表面生长动力学标度行为的影响. 物理学报, 2012, 61(8): 086801. doi: 10.7498/aps.61.086801
    [17] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [18] 唐超, 吉璐, 孟利军, 孙立忠, 张凯旺, 钟建新. 6H-SiC(0001)表面graphene逐层生长的分子动力学研究. 物理学报, 2009, 58(11): 7815-7820. doi: 10.7498/aps.58.7815
    [19] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [20] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
计量
  • 文章访问数:  7442
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-03
  • 修回日期:  2021-10-01
  • 上网日期:  2022-01-19
  • 刊出日期:  2022-02-05

/

返回文章
返回