搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分子动力学的石墨炔纳米带空位缺陷的导热特性

兰生 李焜 高新昀

引用本文:
Citation:

基于分子动力学的石墨炔纳米带空位缺陷的导热特性

兰生, 李焜, 高新昀

Based on the molecular dynamics characteristic research of heat conduction of graphyne nanoribbons with vacancy defects

Lan Sheng, Li Kun, Gao Xin-Yun
PDF
导出引用
  • 空位缺陷石墨炔比完整石墨炔更贴近实际材料,而空位缺陷的多样性可导致更丰富的导热特性,因此模拟各种空位缺陷对热导率的影响显得尤为重要.采用非平衡分子动力学方法,通过在纳米带长度方向上施加周期性边界条件,基于AIREBO (adaptive intermolecular reactive empirical bond order)势函数描述碳-碳原子间的相互作用,模拟了300 K时单层石墨炔纳米带乙炔链上单空位缺陷和双空位缺陷以及苯环上单空位缺陷对其热导率的影响,利用Fourier定律计算热导率.模拟结果表明,对于几十纳米尺度范围内的石墨炔纳米带热导率,1)由于声子的散射集中和声子倒逆过程增强,与完美无缺陷的石墨炔纳米带相比,空位缺陷会导致石墨炔纳米带热导率的下降;2)由于声子态密度匹配程度高低的不同,相比于乙炔链上的空位缺陷,苯环的空位缺陷对石墨炔纳米带热导率影响更大,乙炔链上空位缺陷数量对石墨炔纳米带热导率的影响明显;3)由于尺寸效应问题,随着长度增加,石墨炔纳米带热导率会相应增大.本文的研究可为在一定尺度下进行石墨炔纳米带热导率的调控问题提供参考.
    As a kind of nano-material, graphyne nanoribbon has some physical properties and its properties should be studied for its better usage. In the process of preparing graphyne nanoribbons, it is possible that vacancy defects exist in the lattice structure, which will affect the physical properties of the graphyne nanoribbons. The flotation of graphyne is closer to the actual situation in engineering than the complete graphyne nanoribbons, and the diversity of vacancy defects can lead to various thermal conductivities, so it is very important to simulate the effects of various vacancy defects on thermal conductivity. In order to better predicte and control heat transfer characteristics of graphyne nanoribbons, this paper focuses on the effects of vacancy defects on the heat transfer characteristics of graphyne nanoribbons. According to the different cutting directions of graphyne nanoribbons, two different types of graphyne nanoribbons are obtained, i.e., armchair type and zigzag type. We compare the effects of vacancy defects on the thermal conductivity of two different chiral graphynes nanoribbons to improve the persuasiveness of the conclusion. In this paper, non-equilibrium molecular dynamics method is adopted, by applying periodic boundary conditions in the length direction of the nanoribbons, the interaction between the carbon-carbon atoms is described based on a potential function of adaptive intermolecular reactive empirical bond order (AIREBO). At 300 K, the effects of single vacancy defect in the acetylene chain, single vacancy defect in the benzene ring or double vacancy defects in the acetylene chain on the thermal conductivities of single-layer graphyne nanoribbons are simulated. Fourier's law is used to calculate the thermal conductivities of graphyne nanoribbons. The simulation results show that for the thermal conductivity of graphyne nanoribbons in a-few-dozen nanometer range:1) as a result of the phonon scattering and enhanced phonon Umklapp process, the graphyne nanoribbons with vacancy defects will cause the thermal conductivity to decrease and becomes lower than that of the complete graphyne nanoribbons; 2) due to the difference in phonon density-of-states matching degree, the vacancy defect in the benzene ring of graphyne nanoribbons has a greater effect on the thermal conductivity than that of vacancy defect in the acetylene chain of graphyne nanoribbons, the vacancy defects have a strong influence on the thermal conductivity of in the acetylene chain of graphyne nanoribbons; 3) because of the influence of size effect, the thermal conductivity of graphyne nanoribbon increases with length increasing. In this paper, the research of the thermal conductivity of graphyne nanoribbon provides the reference for controlling their thermal conductivity on a certain scale.
      Corresponding author: Lan Sheng, lansheng@fzu.edu.cn;417955272@qq.com ; Li Kun, lansheng@fzu.edu.cn;417955272@qq.com
    • Funds: Project supported by the Science Foundation of the Fujian Province,China (Grant No.2015J01194) and the National Natural Science Foundation of China (Grant No.61174117).
    [1]

    Novoselov K S, Geim A K, Morozov S V 2004 J. Sci. 306 666

    [2]

    Kim R, Datta S, Lundstrom M S 2009 J. Appl. Phys. 105 034506

    [3]

    Berber S, Kwon Y K, Tomanek D 2000 J. Phys. Rev. Lett. 84 4613

    [4]

    Ghosh S, Calizo I, Teweldebrhan D 2008 J. Appl. Phys. Lett. 92 151911

    [5]

    Hu J, Ruan X, Chen Y P 2009 J. Nano Lett. 9 2730

    [6]

    Guo Z, Zhang D, Gong X G 2009 J. Appl. Phys. Lett. 95 16310

    [7]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687

    [8]

    Li J, Porter L, Yip S 1998 J. Nucl. Mater. 255 139

    [9]

    Zhang H, He X, Zhao M, Zhang M, Zhao L, Feng X 2012 J. Phys. Chem. C 116 16634

    [10]

    Kou J, Zhou X, Chen Y, Lu H, Wu F, Fan J 2013 J. Chem. Phys. 139 064705

    [11]

    WillIan J E, Liu H, Pawel K 2010 Appl. Phys. Lett. 96 203112

    [12]

    Zhang Y Y, Pei Q X, Wang C M 2012 Comp. Mater. Sci. 65 406

    [13]

    Ouyang T, Chen Y P, Liu L M, Xie Y, Wei X L, Zhong J X 2012 Phys. Rev. B 85 235436

    [14]

    Zhang Y Y, Pei Q X, Wang C M 2012 Mater. Sci. 65 406

    [15]

    Zhan H, Zhang Y, Bell J M, Mai Y W, Gu Y 2014 Carbon 77 416

    [16]

    Ouyang T, Chen Y 2012 Phys. Rev. B 85 235436

    [17]

    Liu Y, Hu C, Huang J, Sumpter B G, Qiao R 2015 J. Chem. Phys. 142 244703

    [18]

    Liu Y, Huang J, Yang B, Sumpter B G, Qiao R 2014 Carbon 75 169

    [19]

    Zhan H, Zhang Y, Bell J M, Mai Y W, Gu Y 2014 Carbon 77 416

    [20]

    Wen Z H 2014 M. S. Dissertation (Hunan:Xiangtan University) (in Chinese)[温志宏 2014 硕士学位论文 (湖南:湘潭大学)]

    [21]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [22]

    Shenderova B, Stuart H, Sinnott N 2002 J. Phys:Condens. Matter 14 783

    [23]

    Lu Y, Qian J 2016 Appl. Math. Mech. 37 9 (in Chinese)[鲁莹, 钱劲 2016 应用数学和力学 37 9]

    [24]

    Liu H Y, Li Z 2015 J. Mater. Sci. Engin. 33 1 (in Chinese)[刘海洋, 李政 2015 材料科学与工程学报 33 1]

    [25]

    Huang L Y, Han Q 2012 Sci. Sin.:Phys. Mech. Astron. 42 3 (in Chinese)[黄凌燕, 韩强 2012 中国科学:42 3]

    [26]

    Hui Z X, He P F, Dai Y, Wu A H 2014 Acta Phys. Sin. 63 074401 (in Chinese)[惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401]

    [27]

    Tang J J, Feng Y H, Li W, Cui L, Zhang X X 2013 Acta Phys. Sin. 62 226102 (in Chinese)[唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣 2013 物理学报 62 226102]

    [28]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [29]

    Che J,öaöin T, Deng W, Goddard W A Ⅲ 2000 J. Chem. Phys. 113 6888

    [30]

    Mller-Plathe F 1999 Phys. Rev. E 59 4894

    [31]

    Berber S, Kwon Y K, Tománek D 2000 Phys Rev Lett. 84 4613

    [32]

    Rosenblum I, Adler J, Brandon S 1998 Comp. Mater. Sci. 12 9

    [33]

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 76501 (in Chinese)[杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟 2012 物理学报 61 76501]

    [34]

    Wei Z Y, Bi K D, Chen Y F 2010 J. Southeast University (Natural Science Edition) 40 306 (in Chinese)[魏志勇, 毕可东, 陈云飞 2010 东南大学学报 40 306]

    [35]

    Yao C J, Wang X M, Li Y Y, Wang J 2013 J. Yangzhou University (Natural Science Edition) 16 22 (in Chinese)[姚承军, 汪晓明, 李莹莹, 王健 2013 扬州大学学报 16 22]

    [36]

    Li W, Feng Y H, Zhang X X, Chen Y 2012 CIESC Journal 63 75 (in Chinese)[李威, 冯妍卉, 张欣欣, 陈阳 2012 化工学报 63 75]

    [37]

    Guo Z X, Zhang D E, Gong X G 2009 J. Appl. Phys. Lett. 95 163103

    [38]

    Alaghemandl M, Algaer E, Bohm M C, Mller-Plathe F 2009 J. Nanotechnology 20 115704

    [39]

    Sho H, Takuma H, Takuma S, James E, Junichiro S 2013 International J. Heat and Mass Transfer 67 1024

    [40]

    Ragesh C, Sarith P S 2013 Solid State Communications 73 1

    [41]

    Rajabpour A, Allaei S M V, Kowsary F 2011 J. Appl. Phys. Lett. 99 051917

    [42]

    Zhou W X, Chen K Q 2015 Carbon 85 24

  • [1]

    Novoselov K S, Geim A K, Morozov S V 2004 J. Sci. 306 666

    [2]

    Kim R, Datta S, Lundstrom M S 2009 J. Appl. Phys. 105 034506

    [3]

    Berber S, Kwon Y K, Tomanek D 2000 J. Phys. Rev. Lett. 84 4613

    [4]

    Ghosh S, Calizo I, Teweldebrhan D 2008 J. Appl. Phys. Lett. 92 151911

    [5]

    Hu J, Ruan X, Chen Y P 2009 J. Nano Lett. 9 2730

    [6]

    Guo Z, Zhang D, Gong X G 2009 J. Appl. Phys. Lett. 95 16310

    [7]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687

    [8]

    Li J, Porter L, Yip S 1998 J. Nucl. Mater. 255 139

    [9]

    Zhang H, He X, Zhao M, Zhang M, Zhao L, Feng X 2012 J. Phys. Chem. C 116 16634

    [10]

    Kou J, Zhou X, Chen Y, Lu H, Wu F, Fan J 2013 J. Chem. Phys. 139 064705

    [11]

    WillIan J E, Liu H, Pawel K 2010 Appl. Phys. Lett. 96 203112

    [12]

    Zhang Y Y, Pei Q X, Wang C M 2012 Comp. Mater. Sci. 65 406

    [13]

    Ouyang T, Chen Y P, Liu L M, Xie Y, Wei X L, Zhong J X 2012 Phys. Rev. B 85 235436

    [14]

    Zhang Y Y, Pei Q X, Wang C M 2012 Mater. Sci. 65 406

    [15]

    Zhan H, Zhang Y, Bell J M, Mai Y W, Gu Y 2014 Carbon 77 416

    [16]

    Ouyang T, Chen Y 2012 Phys. Rev. B 85 235436

    [17]

    Liu Y, Hu C, Huang J, Sumpter B G, Qiao R 2015 J. Chem. Phys. 142 244703

    [18]

    Liu Y, Huang J, Yang B, Sumpter B G, Qiao R 2014 Carbon 75 169

    [19]

    Zhan H, Zhang Y, Bell J M, Mai Y W, Gu Y 2014 Carbon 77 416

    [20]

    Wen Z H 2014 M. S. Dissertation (Hunan:Xiangtan University) (in Chinese)[温志宏 2014 硕士学位论文 (湖南:湘潭大学)]

    [21]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [22]

    Shenderova B, Stuart H, Sinnott N 2002 J. Phys:Condens. Matter 14 783

    [23]

    Lu Y, Qian J 2016 Appl. Math. Mech. 37 9 (in Chinese)[鲁莹, 钱劲 2016 应用数学和力学 37 9]

    [24]

    Liu H Y, Li Z 2015 J. Mater. Sci. Engin. 33 1 (in Chinese)[刘海洋, 李政 2015 材料科学与工程学报 33 1]

    [25]

    Huang L Y, Han Q 2012 Sci. Sin.:Phys. Mech. Astron. 42 3 (in Chinese)[黄凌燕, 韩强 2012 中国科学:42 3]

    [26]

    Hui Z X, He P F, Dai Y, Wu A H 2014 Acta Phys. Sin. 63 074401 (in Chinese)[惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401]

    [27]

    Tang J J, Feng Y H, Li W, Cui L, Zhang X X 2013 Acta Phys. Sin. 62 226102 (in Chinese)[唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣 2013 物理学报 62 226102]

    [28]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [29]

    Che J,öaöin T, Deng W, Goddard W A Ⅲ 2000 J. Chem. Phys. 113 6888

    [30]

    Mller-Plathe F 1999 Phys. Rev. E 59 4894

    [31]

    Berber S, Kwon Y K, Tománek D 2000 Phys Rev Lett. 84 4613

    [32]

    Rosenblum I, Adler J, Brandon S 1998 Comp. Mater. Sci. 12 9

    [33]

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 76501 (in Chinese)[杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟 2012 物理学报 61 76501]

    [34]

    Wei Z Y, Bi K D, Chen Y F 2010 J. Southeast University (Natural Science Edition) 40 306 (in Chinese)[魏志勇, 毕可东, 陈云飞 2010 东南大学学报 40 306]

    [35]

    Yao C J, Wang X M, Li Y Y, Wang J 2013 J. Yangzhou University (Natural Science Edition) 16 22 (in Chinese)[姚承军, 汪晓明, 李莹莹, 王健 2013 扬州大学学报 16 22]

    [36]

    Li W, Feng Y H, Zhang X X, Chen Y 2012 CIESC Journal 63 75 (in Chinese)[李威, 冯妍卉, 张欣欣, 陈阳 2012 化工学报 63 75]

    [37]

    Guo Z X, Zhang D E, Gong X G 2009 J. Appl. Phys. Lett. 95 163103

    [38]

    Alaghemandl M, Algaer E, Bohm M C, Mller-Plathe F 2009 J. Nanotechnology 20 115704

    [39]

    Sho H, Takuma H, Takuma S, James E, Junichiro S 2013 International J. Heat and Mass Transfer 67 1024

    [40]

    Ragesh C, Sarith P S 2013 Solid State Communications 73 1

    [41]

    Rajabpour A, Allaei S M V, Kowsary F 2011 J. Appl. Phys. Lett. 99 051917

    [42]

    Zhou W X, Chen K Q 2015 Carbon 85 24

  • [1] 刘东静, 周福, 胡志亮, 黄家强. 石墨烯/GaN异质结构界面热输运性质的分子动力学研究. 物理学报, 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [2] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究. 物理学报, 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [3] 李耀隆, 李哲, 李松远, 张任良. 层间共价键和拉伸应变对双层石墨烯纳米带热导率的调控. 物理学报, 2023, 72(24): 243101. doi: 10.7498/aps.72.20231230
    [4] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [5] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [6] 刘东静, 王韶铭, 杨平. 石墨烯/碳化硅异质界面热学特性的分子动力学模拟. 物理学报, 2021, 70(18): 187302. doi: 10.7498/aps.70.20210613
    [7] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211857
    [8] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊(Jun Wang), 邹 宇, 付宝勤(Baoqin Fu). 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211434
    [9] 彭亚晶, 蒋艳雪. 分子空位缺陷对环三亚甲基三硝胺含能材料几何结构、电子结构及振动特性的影响. 物理学报, 2015, 64(24): 243102. doi: 10.7498/aps.64.243102
    [10] 贺慧芳, 陈志权. 用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响. 物理学报, 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [11] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [12] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [13] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [14] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [15] 李威, 冯妍卉, 陈阳, 张欣欣. 碳纳米管中点缺陷对热导率影响的正交试验模拟分析. 物理学报, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [16] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [17] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [18] 袁剑辉, 程玉民, 张振华. 空位结构缺陷对C纳米管弹性性质的影响. 物理学报, 2009, 58(4): 2578-2584. doi: 10.7498/aps.58.2578
    [19] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] 张超, 吕海峰, 张庆瑜. 低能Pt原子与Pt(111)表面相互作用的分子动力学模拟. 物理学报, 2002, 51(10): 2329-2334. doi: 10.7498/aps.51.2329
计量
  • 文章访问数:  6695
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-10
  • 修回日期:  2017-05-09
  • 刊出日期:  2017-07-05

/

返回文章
返回