搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁悬浮条件下液态Fe50Cu50合金的对流和凝固规律研究

林茂杰 常健 吴宇昊 徐山森 魏炳波

引用本文:
Citation:

电磁悬浮条件下液态Fe50Cu50合金的对流和凝固规律研究

林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波

Fluid convection and solidification mechanisms of liquid Fe50Cu50 alloy under electromagnetic levitation condition

Lin Mao-Jie, Chang Jian, Wu Yu-Hao, Xu Shan-Sen, Wei Bing-Bo
PDF
导出引用
  • 基于轴对称电磁悬浮模型,理论计算了二元Fe50Cu50合金熔体内部的磁感应强度和感应电流,分析了其时均洛伦兹力分布特征,进一步耦合Navier-Stokes方程组计算求解了合金熔体内部流场分布规律.计算结果表明,电磁悬浮状态下合金内部流场呈现环形管状分布,并且电流强度、电流频率或合金过冷度的增加,均会导致熔体内部流动速率峰值减小,平均流动速率增大,并使流动速率大于100 mm·-1区域显著增大.通过与静态凝固实验对比发现,电磁悬浮条件下熔体中强制对流使得合金内部富Fe和富Cu区的相界面呈波浪状起伏形貌,并且富Cu相颗粒在熔体上部分出现的概率增加.
    In the electromagnetic levitation experiment, the liquid flow in the undercooled liquid alloy remarkably affects the relevant thermodynamic property measurement and solidification microstructure. Therefore, it is of great importance to understand the fluid convection inside the undercooled melt. Theoretical calculation and electromagnetic levitation experiment have been used to investigate the internal velocity distribution and rapid solidification mechanism of Fe50Cu50 alloy. Based on axisymmetric electromagnetic levitation model, the distribution patterns of magnetic flux density and inducted current for levitated Fe50Cu50 alloy are calculated together with the mean Lorenz force. The Navier-Stokes equations are further taken into account in order to clarify the internal fluid flow. The results of the theoretical calculation reveal that the fluid velocity within levitated melt is strongly dependent on three factors, i.e., current density, current frequency and melt undercooling. As one of these factors increases, the maximum fluid velocity decreases while the average fluid velocity increases. Meanwhile, the area with fluid velocity larger than 100 mm·-1 is significantly extended. Furthermore, the fluid flow within levitated melt displays an annular tubular distribution characteristic. The Fe50Cu50 alloy melt is undercooled and solidified under electromagnetic levitation condition. In this undercooling regime △ T50Cu50 alloy melt has suppressed phase separation substantially. Once the undercooling attains a value of 150 K, metastable phase separation leads to the formation of layered pattern structure consisting of floating Fe-rich zone and sinking Cu-rich zone. A core-shell macrosegregation morphology with the Cu-rich zone distributed in the center and outside of the sample and Fe-rich zone in the middle occurs if the undercooling increases to 204 K. With the enhancement of undercooling after phase separation, the grain size of α -Fe dendrites in Cu-rich zone presents a decreasing trend. In contrast to the phase separated morphology of Fe50Cu50 alloy under the glass fluxing condition, the phase separated morphologies show obviously different characteristics. In such a case, the forced convection induced by electromagnetic stirring results in the formation of wavy interface between Fe-rich and Cu-rich zones, the distorted morphology of the Cu-rich spheres distributed in the Fe-rich zone, and the increased appearance probabilities of Cu-rich spheres at the upper part of electromagnetically levitated sample. Experimental observations demonstrate that the distribution pattern of Cu-rich spheres in Fe-rich zone is influenced by the tubular fluid flow inside the melt.
      通信作者: 常健, jchang@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51401167,51327901)和中央高校基本科研业务费专项资金(批准号:3102015ZY097)资助的课题.
      Corresponding author: Chang Jian, jchang@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.51401167,51327901),and Fundamental Research Funds for the Central Universities,China (Grant No.3102015ZY097).
    [1]

    Seidel A, Soellner W, Stenzel C 2011 4th International Symposium on Physical Sciences in Space Bonn, Germany, July 11-15, 2011 p1

    [2]

    Daun K J 2016 Metall. Mater. Trans. A 47 3300

    [3]

    Chang J, Wang H P, Zhou K, Wei B 2012 Appl. Phys. A 109 139

    [4]

    Ma W Z, Ji C C, Li J G 2002 Acta Phys. Sin. 51 2233 (in Chinese)[马伟增, 季诚昌, 李建国 2002 物理学报 51 2233]

    [5]

    Wang H P, Chang J, Wei B 2009 J. Appl. Phys. 106 033506

    [6]

    Brillo J, Lohofer G, Schmidt-Hohagen F, Schneider S, Egry I 2006 Int. J. Mater. Prod. Tec. 26 247

    [7]

    Zhang L B, Dai F P, Xiong Y Y, Wei B B 2005 Acta Phys. Sin. 54 419 (in Chinese)[张蜡宝, 代富平, 熊予莹, 魏炳波 2005 物理学报 54 419]

    [8]

    Lu X Y, Cao C D, Kolbe M, Wei B, Herlach D M 2005 Meas. Sci. Technol. 16 394

    [9]

    Sneyd A, Moffatt H 1982 J. Fluid. Mech. 117 45

    [10]

    Okress E, Wroughton D, Comenetz G, Brace P, Kelly J 1952 J. Appl. Phys. 23 545

    [11]

    Spitans S, Jakovics A, Baake E, Nacke B 2013 Metall. Mater. Trans. B 44 593

    [12]

    Dughiero F, Baake E, Forzan M, Bojarevics V, Roy A, Pericleous K 2011 Compel. 30 1455

    [13]

    Feng L, Shi W Y 2015 Metall. Mater. Trans. B 46 1895

    [14]

    Menter F R 1994 AIAA J. 32 8

    [15]

    Cho Y C, Kim B S, Yoo H, Kim J Y, Lee S, Lee Y H, Lee G W, Jeong S Y 2014 Cryst. Eng. Comm. 16 7575

    [16]

    Lee G W, Jeon S, Kang D H 2013 Cryst. Growth. Des. 13 1786

    [17]

    Gntherodt H J, Hauser E, Knzi H, Mller R 1975 Phys. Lett. 54 291

    [18]

    Gale W F, Totemeier T C 2004 Smithells Metals Reference Book (Vol. 8) (Netherlands:Elsevier Butterworth-Heinemann) P14-1-P14-29

    [19]

    Munitz A, Venkert A, Landau P, Kaufman M J, Abbaschian R 2012 J. Mater. Sci. 47 7955

    [20]

    Luo S B, Wang W L, Chang J, Xia Z C, Wei B 2014 Acta Mater. 69 355

    [21]

    Zhao J Z, Li H L, Zhao L 2009 Acta Metall. Sin. 45 1435

  • [1]

    Seidel A, Soellner W, Stenzel C 2011 4th International Symposium on Physical Sciences in Space Bonn, Germany, July 11-15, 2011 p1

    [2]

    Daun K J 2016 Metall. Mater. Trans. A 47 3300

    [3]

    Chang J, Wang H P, Zhou K, Wei B 2012 Appl. Phys. A 109 139

    [4]

    Ma W Z, Ji C C, Li J G 2002 Acta Phys. Sin. 51 2233 (in Chinese)[马伟增, 季诚昌, 李建国 2002 物理学报 51 2233]

    [5]

    Wang H P, Chang J, Wei B 2009 J. Appl. Phys. 106 033506

    [6]

    Brillo J, Lohofer G, Schmidt-Hohagen F, Schneider S, Egry I 2006 Int. J. Mater. Prod. Tec. 26 247

    [7]

    Zhang L B, Dai F P, Xiong Y Y, Wei B B 2005 Acta Phys. Sin. 54 419 (in Chinese)[张蜡宝, 代富平, 熊予莹, 魏炳波 2005 物理学报 54 419]

    [8]

    Lu X Y, Cao C D, Kolbe M, Wei B, Herlach D M 2005 Meas. Sci. Technol. 16 394

    [9]

    Sneyd A, Moffatt H 1982 J. Fluid. Mech. 117 45

    [10]

    Okress E, Wroughton D, Comenetz G, Brace P, Kelly J 1952 J. Appl. Phys. 23 545

    [11]

    Spitans S, Jakovics A, Baake E, Nacke B 2013 Metall. Mater. Trans. B 44 593

    [12]

    Dughiero F, Baake E, Forzan M, Bojarevics V, Roy A, Pericleous K 2011 Compel. 30 1455

    [13]

    Feng L, Shi W Y 2015 Metall. Mater. Trans. B 46 1895

    [14]

    Menter F R 1994 AIAA J. 32 8

    [15]

    Cho Y C, Kim B S, Yoo H, Kim J Y, Lee S, Lee Y H, Lee G W, Jeong S Y 2014 Cryst. Eng. Comm. 16 7575

    [16]

    Lee G W, Jeon S, Kang D H 2013 Cryst. Growth. Des. 13 1786

    [17]

    Gntherodt H J, Hauser E, Knzi H, Mller R 1975 Phys. Lett. 54 291

    [18]

    Gale W F, Totemeier T C 2004 Smithells Metals Reference Book (Vol. 8) (Netherlands:Elsevier Butterworth-Heinemann) P14-1-P14-29

    [19]

    Munitz A, Venkert A, Landau P, Kaufman M J, Abbaschian R 2012 J. Mater. Sci. 47 7955

    [20]

    Luo S B, Wang W L, Chang J, Xia Z C, Wei B 2014 Acta Mater. 69 355

    [21]

    Zhao J Z, Li H L, Zhao L 2009 Acta Metall. Sin. 45 1435

  • [1] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离. 物理学报, 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [2] 武博文, 胡亮, 耿德路, 魏炳波. 液态Zr35Al23Ni22Gd20合金的亚稳相分离与双相非晶形成机理. 物理学报, 2023, 72(21): 216401. doi: 10.7498/aps.72.20231002
    [3] 徐山森, 常健, 翟斌, 朱先念, 魏炳波. 液态五元Zr57Cu20Al10Ni8Ti5合金的微观结构演变与非晶形成机制. 物理学报, 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [4] 郑来运, 赵秉新, 杨建青. 弱Soret效应混合流体对流系统的分岔与非线性演化. 物理学报, 2020, 69(7): 074701. doi: 10.7498/aps.69.20191836
    [5] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究. 物理学报, 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [6] 魏绍楼, 黄陆军, 常健, 杨尚京, 耿林. 液态Ti-Al合金的深过冷与快速枝晶生长. 物理学报, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [7] 杨尚京, 王伟丽, 魏炳波. 深过冷液态Al-Ni合金中枝晶与共晶生长机理. 物理学报, 2015, 64(5): 056401. doi: 10.7498/aps.64.056401
    [8] 宋其晖, 石万元. 横向静磁场对电磁悬浮液滴稳定性的影响. 物理学报, 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [9] 石玉峰, 许庆彦, 柳百成. 对流作用下枝晶形貌演化的数值模拟和实验研究. 物理学报, 2011, 60(12): 126101. doi: 10.7498/aps.60.126101
    [10] 姜泽辉, 张峰, 郭波, 赵海发, 郑瑞华. 受振颗粒“毛细”系统中的对流与有序化. 物理学报, 2010, 59(8): 5581-5587. doi: 10.7498/aps.59.5581
    [11] 孙东科, 朱鸣芳, 杨朝蓉, 潘诗琰, 戴挺. 强制对流和自然对流作用下枝晶生长的数值模拟. 物理学报, 2009, 58(13): 285-S291. doi: 10.7498/aps.58.285
    [12] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响. 物理学报, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [13] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [14] 翟 薇, 王 楠, 魏炳波. 偏晶溶液相分离过程的实时观测研究. 物理学报, 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [15] 梅策香, 阮 莹, 代富平, 魏炳波. 深过冷Ag-Cu-Ge三元共晶合金的相组成与凝固特征. 物理学报, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [16] 臧渡洋, 王海鹏, 魏炳波. 深过冷三元Ni-Cu-Co合金的快速枝晶生长. 物理学报, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [17] 陈明文, 王自东, 孙仁济. 远场来流对过冷熔体中球状晶体生长的影响. 物理学报, 2007, 56(3): 1819-1824. doi: 10.7498/aps.56.1819
    [18] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究. 物理学报, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [19] 刘向荣, 王 楠, 魏炳波. 无容器条件下Cu-Pb偏晶的快速生长. 物理学报, 2005, 54(4): 1671-1678. doi: 10.7498/aps.54.1671
    [20] 马伟增, 季诚昌, 李建国. 直流磁场控制电磁悬浮熔炼旋转稳定性的理论分析. 物理学报, 2002, 51(10): 2233-2238. doi: 10.7498/aps.51.2233
计量
  • 文章访问数:  5129
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-08
  • 修回日期:  2017-05-05
  • 刊出日期:  2017-07-05

/

返回文章
返回