搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子辐照对磷烯热导率的影响及其机制分析

郑翠红 杨剑 谢国锋 周五星 欧阳滔

引用本文:
Citation:

离子辐照对磷烯热导率的影响及其机制分析

郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔

Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism

Zheng Cui-Hong, Yang Jian, Xie Guo-Feng, Zhou Wu-Xing, Ouyang Tao
PDF
HTML
导出引用
  • 通过离子辐照产生缺陷, 可以非常有效地调控磷烯诸多物理性质. 本文应用分子动力学方法模拟离子辐照磷烯的过程, 给出了缺陷的形成概率与入射离子能量、离子种类以及离子入射角度之间的关系, 并且应用非平衡态分子动力学计算辐照后磷烯热导率的变化. 以缺陷形成概率为切入点, 系统地研究了辐照离子的能量、辐照剂量、离子的种类以及离子的入射角度对磷烯热导率的影响. 应用晶格动力学方法研究了空位缺陷对磷烯声子参与率的影响, 并计算了声子局域模式的空间分布. 基于量子微扰和键弛豫理论, 指出空位缺陷明显降低磷烯热导率的最重要物理机制是空位缺陷附近的低配位原子对声子强烈散射. 本文研究可为缺陷工程调控磷烯的热输运性质提供理论参考.
    Defects produced by ion irradiation can effectively modulate many physical properties of phosphorene. In this paper, the molecular dynamics method is used to simulate the ion irradiation process of phosphorene. The relations between the formation probability of defects and the energy of incident ions, ion species and incident angle of ions are revealed. The non-equilibrium molecular dynamics simulation is used to calculate the thermal conductivity of irradiated phosphorene. The effects of the energy of ions, the irradiation dose, the type of ions and the incident angle of ions on the thermal conductivity of phosphorene are systematically investigated. The influence of the vacancies on the phonon participation rate of phosphorene is studied by lattice dynamics method, and the spatial distribution of localized modes is demonstrated. According to the quantum-mechanical perturbation theory and bond relaxation theory, we point out that the dominant physical mechanism of vacancy defects which significantly reduce the thermal conductivity of phosphorene is the strong scattering of phonons by the low-coordinated atoms near the vacancies. This study provides a theoretical basis for tuning the heat transport properties of phosphorene by defect engineering.
      通信作者: 谢国锋, xieguofeng@hnust.cn
    • 基金项目: 国家自然科学基金(批准号: 11874145)资助的课题.
      Corresponding author: Xie Guo-Feng, xieguofeng@hnust.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874145)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva S V, Firsov A A 2004 Science 306 5695

    [2]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. commun. 5 4475Google Scholar

    [3]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 1

    [4]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotech. 9 372

    [5]

    Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar

    [6]

    Cui C, Ouyang T, Tang C, He C, Li J, Zhang C, Zhong J 2021 Carbon 176 52Google Scholar

    [7]

    Chen X K, Hu X Y, Jia P, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576Google Scholar

    [8]

    Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829Google Scholar

    [9]

    Haskins J, Kınacı A, Sevik C, Sevinçli H, Cuniberti G, Cağın T 2011 Acs. Nano. 5 3779Google Scholar

    [10]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805Google Scholar

    [11]

    Guo Y, Robertson J 2015 Sci. Rep. 5 14165Google Scholar

    [12]

    Ziletti A, Carvalho A, Campbell D K, Coker D F, Castro Neto A H 2015 Phys. Rev. Lett. 114 046801Google Scholar

    [13]

    Yuan S, Rudenko A N, Katsnelson M I 2015 Phy. Rev. B 91 115436Google Scholar

    [14]

    Qin G, Yan Q B, Qin Z, Yue S Y, Cui H J, Zheng Q R, Su G 2014 Sci. Rep. 4 6946Google Scholar

    [15]

    Ong Z Y, Cai Y, Zhang G, Zhang Y W 2014 J. Phys. Chem. C 118 43

    [16]

    Xu W, Zhu L, Cai Y, Zhang G, Li B 2015 J. Appl. Phys. 1172 14308

    [17]

    Jiang J W 2015 Nanotechnology 26 315706Google Scholar

    [18]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Matter (New York: Pergamon Press) pp93–129

    [19]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [20]

    Zhang H, Zhou T, Xie G F, Cao J X, Yang Z 2014 Appl. Phys. Lett. 104 241908Google Scholar

    [21]

    Müllerplathe F 1997 J. Chem. Phys. 106 6082Google Scholar

    [22]

    Bellido E P, Seminario J M 2012 J. Phys. Chem. C 116 4044Google Scholar

    [23]

    Lehtinen O, Dumur E, Kotakoski J, Krasheninnikov A V, Nordlund K, Keinonen J 2011 Nucl. Instrum. Meth. Phys. Res. B 269 1327Google Scholar

    [24]

    Schelling P K, PhillpotS R 2001 J. Am. Ceram. Soc. 84 2997Google Scholar

    [25]

    Wang Y, Qiu B, Ruan X 2012 Appl. Phys. Lett. 101 013101Google Scholar

    [26]

    Klemens P G 1955 Proc. Phys. Soc. A 68 1113Google Scholar

    [27]

    Pauling L 1947 J. Am. Chem. Soc. 69 542Google Scholar

    [28]

    Sun C Q 2007 Prog. Solid State Chem. 35 1Google Scholar

    [29]

    Liu Y H, Yang X X, Bo M L, Zhang X, Liu X J, Sun C Q, Huang Y L 2016 J. Raman Spectrosc. 47 1304Google Scholar

    [30]

    Klemens P G 1958 Solid State Phys. 7 1

    [31]

    Huang W J, Sun R, Tao J, Menard L D, Nuzzo R G, Zuo J M 2008 Nat. Mater. 7 308Google Scholar

    [32]

    Crespi V H, Chopra N G, Cohen M L, Zettl A, Louie S G 1996 Phys. Rev. B 54 5927Google Scholar

  • 图 1  (a) 离子辐照黑磷模拟示意图, 黑色的原子层为黑磷模型, 黄色小球代表辐照的离子; (b) 计算磷烯热导率的MP模拟方法示意图

    Fig. 1.  (a) Schematic diagram of ions irradiation black phosphorus simulation, the black atomic layer is the black phosphorus model, the yellow balls represent the irradiated ions; (b) schematic diagram of MP simulation method for calculating the thermal conductivity of phosphene.

    图 2  反射、穿透以及损伤的发生概率与入射质子能量之间的关系

    Fig. 2.  Probability of occurrence versus kinetic energy of protons for reflection, transmission, and damage events.

    图 3  不同离子对磷烯造成损伤的概率与入射离子能量之间的关系

    Fig. 3.  Relationship between the probability of damage and the incident energy of different ions.

    图 4  不同入射能量下, 磷烯损伤概率与入射角度之间的关系

    Fig. 4.  Relationship between the probability of damage and the incident angle in case of different kinetic energy of protons.

    图 5  不同辐照剂量下, 磷烯热导率与入射质子能量之间的关系

    Fig. 5.  Thermal conductivity of phosphorene versus kinetic energy of incident protons at different irradiation dose.

    图 6  不同离子的辐照下, 磷烯的热导率与入射离子能量之间的关系

    Fig. 6.  Thermal conductivity of phosphorene versus kinetic energy of different ions.

    图 7  不同能量下, 磷烯的热导率与质子入射角度之间的关系

    Fig. 7.  Thermal conductivity of phosphorene versus incident angle in case of different kinetic energy of protons.

    图 8  没有缺陷的磷烯、以及空位缺陷浓度分别为1.2%和3.2%的磷烯振动模式参与率

    Fig. 8.  The participation ratios of each vibrational eigen-mode for pristine phosphorene and phosphorene with 1.2% and 3.2% vacancies.

    图 9  空位缺陷磷烯局域化振动模式的空间分布图, X, Y位置的颜色代表该位置的局域化程度

    Fig. 9.  The spatial distribution of localized modes for vacancy-defected phosphorene; the color of X, Y corresponds to the magnitude of localization at that position (X, Y ).

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva S V, Firsov A A 2004 Science 306 5695

    [2]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. commun. 5 4475Google Scholar

    [3]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 1

    [4]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotech. 9 372

    [5]

    Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar

    [6]

    Cui C, Ouyang T, Tang C, He C, Li J, Zhang C, Zhong J 2021 Carbon 176 52Google Scholar

    [7]

    Chen X K, Hu X Y, Jia P, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576Google Scholar

    [8]

    Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829Google Scholar

    [9]

    Haskins J, Kınacı A, Sevik C, Sevinçli H, Cuniberti G, Cağın T 2011 Acs. Nano. 5 3779Google Scholar

    [10]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805Google Scholar

    [11]

    Guo Y, Robertson J 2015 Sci. Rep. 5 14165Google Scholar

    [12]

    Ziletti A, Carvalho A, Campbell D K, Coker D F, Castro Neto A H 2015 Phys. Rev. Lett. 114 046801Google Scholar

    [13]

    Yuan S, Rudenko A N, Katsnelson M I 2015 Phy. Rev. B 91 115436Google Scholar

    [14]

    Qin G, Yan Q B, Qin Z, Yue S Y, Cui H J, Zheng Q R, Su G 2014 Sci. Rep. 4 6946Google Scholar

    [15]

    Ong Z Y, Cai Y, Zhang G, Zhang Y W 2014 J. Phys. Chem. C 118 43

    [16]

    Xu W, Zhu L, Cai Y, Zhang G, Li B 2015 J. Appl. Phys. 1172 14308

    [17]

    Jiang J W 2015 Nanotechnology 26 315706Google Scholar

    [18]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Matter (New York: Pergamon Press) pp93–129

    [19]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [20]

    Zhang H, Zhou T, Xie G F, Cao J X, Yang Z 2014 Appl. Phys. Lett. 104 241908Google Scholar

    [21]

    Müllerplathe F 1997 J. Chem. Phys. 106 6082Google Scholar

    [22]

    Bellido E P, Seminario J M 2012 J. Phys. Chem. C 116 4044Google Scholar

    [23]

    Lehtinen O, Dumur E, Kotakoski J, Krasheninnikov A V, Nordlund K, Keinonen J 2011 Nucl. Instrum. Meth. Phys. Res. B 269 1327Google Scholar

    [24]

    Schelling P K, PhillpotS R 2001 J. Am. Ceram. Soc. 84 2997Google Scholar

    [25]

    Wang Y, Qiu B, Ruan X 2012 Appl. Phys. Lett. 101 013101Google Scholar

    [26]

    Klemens P G 1955 Proc. Phys. Soc. A 68 1113Google Scholar

    [27]

    Pauling L 1947 J. Am. Chem. Soc. 69 542Google Scholar

    [28]

    Sun C Q 2007 Prog. Solid State Chem. 35 1Google Scholar

    [29]

    Liu Y H, Yang X X, Bo M L, Zhang X, Liu X J, Sun C Q, Huang Y L 2016 J. Raman Spectrosc. 47 1304Google Scholar

    [30]

    Klemens P G 1958 Solid State Phys. 7 1

    [31]

    Huang W J, Sun R, Tao J, Menard L D, Nuzzo R G, Zuo J M 2008 Nat. Mater. 7 308Google Scholar

    [32]

    Crespi V H, Chopra N G, Cohen M L, Zettl A, Louie S G 1996 Phys. Rev. B 54 5927Google Scholar

计量
  • 文章访问数:  4308
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-07
  • 修回日期:  2021-11-03
  • 上网日期:  2022-02-25
  • 刊出日期:  2022-03-05

/

返回文章
返回