搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H+离子辐照Y0.5Gd0.5Ba2Cu3O7–δ超导层中的缺陷演化

但敏 陈伦江 贺岩斌 吕兴旺 万俊豪 张虹 张珂嘉 杨莹 金凡亚

引用本文:
Citation:

H+离子辐照Y0.5Gd0.5Ba2Cu3O7–δ超导层中的缺陷演化

但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚

Defect evolution in Y0.5Gd0.5Ba2Cu3O7–δ superconducting layer irradiated by H+ ions

Dan Min, Chen Lun-Jiang, He Yan-Bin, Lü Xing-Wang, Wan Jun-Hao, Zhang Hong, Zhang Ke-Jia, Yang Ying, Jin Fan-Ya
PDF
HTML
导出引用
  • 为提高RE-Ba-Cu-O涂层导体在强磁场下的超导载流能力, 本文采用离子辐照的方式拟在RE-Ba-Cu-O涂层导体产生缺陷以引入磁通钉扎中心. 实验利用320 kV高电荷态离子综合研究平台对RE-Ba-Cu-O第二代高温超导带材进行H+离子辐照, 进一步采用多普勒展宽慢正电子束分析及拉曼光谱技术研究了剂量在5.0×1014—1.0×1016 ions/cm2范围内H+离子辐照后RE-Ba-Cu-O带材的微观结构的变化规律. 研究结果表明, 随H+离子辐照剂量增大, Y0.5Gd0.5Ba2Cu3O7–δ超导层中产生了包括空位或空位团簇型等类型缺陷, 缺陷增多, 缺陷类型复杂性增加; 涂层中氧原子发生重排, Cu-O面间距增加, 涂层正交相结构被破坏. 此类离子辐照产生的缺陷为磁通钉扎中心的引入奠定基础.
    In order to further improve the superconducting current carrying capacity of RE-Ba-Cu-O coated conductor under the action of strong magnetic field, ion irradiation is used to generate the pinning centers of introduced magnetic flux in the RE-Ba-Cu-O coated conductor. In this work, the H+-ion irradiation of second-generation high-temperature superconductor RE-Ba-Cu-O strip is carried out by using the 320 kV high charge state ion synthesis research platform. Doppler broadened slow positron beam analysis combined with Raman spectroscopy is used to measure the change of microstructure in Y0.5Gd0.5Ba2Cu3O7–δ (YBCO) sample irradiated by H+ ions in a range of 5.0 × 1014–1.0 × 1016 ions/cm2. The positron annihilation parameters in YBCO before and after irradiation are analyzed. It is found that after 100 keV H+ ion irradiation, a large number of defects including vacancies, vacancy groups or dislocation groups are produced in the superconducting layer.The larger the irradiation dose, the more the produced vacancy type defects are and the more complex the defect types, and the annihilation mechanism of positrons in the defects changes. Raman spectroscopy results show that with the increase of H+ ion irradiation dose, the oxygen atoms in the coating rearrange, the plane spacing increases, the orthogonal phase structure of the coating is destroyed, and the degree of order decreases. The defects produced by such an ion irradiation lay a foundation for the introduction of flux pinning centers. Further research can be carried out in combination with X-ray diffractometer, transmission electron microscope, superconductivity and other testing methods to provide theoretical and practical reference for the optimization of material properties.
      通信作者: 金凡亚, 183858293@qq.com
    • 基金项目: 国家自然科学基金(批准号: 52173041, 11875039)和西物创新行动计划(批准号: 202102XWCXYD001)资助的课题
      Corresponding author: Jin Fan-Ya, 183858293@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52173041, 11875039) and the Innovation Program of South Western Institute of Physics of Nuclear Industry, China (Grant No. 202102XWCXYD001).
    [1]

    Bremmer H, De Haas W J 1936 Physica 3 687Google Scholar

    [2]

    Boorse H A 1935 Nature 135 827Google Scholar

    [3]

    屈翠芬 1982 稀有金属材料与工程 02 104

    Qu C F 1982 Rare Met. Mater. Eng. 02 104

    [4]

    Bondarenko S I, Koverya V P, Krevsun A V, Link S I 2017 Low Temp. Phys. 43 1125Google Scholar

    [5]

    蔡传兵, 池长鑫, 李敏娟, 刘志勇, 鲁玉明, 郭艳群, 白传易, 陆齐, 豆文芝 2019 科学通报 64 827

    Cai C B, Chi C X, Li M J, Liu Z Y, Lu Y M, Guo Y Q, Bai C Y, Lu Q, Dou W Z 2019 Sci. Bull. 64 827

    [6]

    Wang K, Hou Q, Arnab Pal 2021 J. Super. Novel Magn. 34 1379Google Scholar

    [7]

    蔡传兵, 刘志勇, 鲁玉明 2011 中国材料进展 30 1

    Cai C B, Liu Z Y, Lu Y M 2011 Mater. China. 30 1

    [8]

    刘建华, 程军胜, 王秋良 2017 电工电能新技术 36 1Google Scholar

    Liu J H, Cheng J S, Wang Q L 2017 Adv. Technol. Electral. Eng. Energ. 36 1Google Scholar

    [9]

    Dadras S, Falahati S, Dehghani 2018 Physica C 548 65Google Scholar

    [10]

    Palau A, Valles F, Rouco V 2018 Supercond. Sci. Technol. 31 034004Google Scholar

    [11]

    Johnson C L, Bording J K, Zhu Y 2008 Phys. Rev. B 1 775

    [12]

    Foltyn S R, Civale L, Macmanusdriscoll J L 2007 Nat. Mater. 6 631Google Scholar

    [13]

    王雅, 索红莉, 毛磊 2019 无机材料学报 10 1055

    Wang Y, Suo H L, Mao L 2019 J. Inorg. Mater. 10 1055

    [14]

    Senatore C, Alessandrini M, Lucarelli A 2014 Supercond. Sci. Technol. 27 103001Google Scholar

    [15]

    李太广 2021 硕士学位论文 (北京: 中国科学院大学)

    Li T G 2021 M. S. Thesis (Beijing: Chinese Academy of Science University) (in Chinese)

    [16]

    Sueyoshi T, Sogo T, Nishimura T, et al. 2016 Supercond. Sci. Technol. 29 065023Google Scholar

    [17]

    贺玮迪, 张培源, 刘翔 2021 物理学报 70 167803Google Scholar

    He W D, Zhang P Y, Liu X 2021 Acta Phys. Sin. 70 167803Google Scholar

    [18]

    Ramachandran R, David C, Magudapathy P, Rajaraman R, Govindaraj R, Amarendra G 2019 Fusion Eng. Des. 142 55Google Scholar

    [19]

    Zibrov M, Egger W, Heikinheimo J 2020 J. Nucl. Mater. 531 152017Google Scholar

    [20]

    王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (武汉: 湖北科学技术出版社) 第57页

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Apply of Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) p57 (in Chinese)

    [21]

    Thomas J, Bastasz R 1981 J. Appl. Phys. 52 6426Google Scholar

    [22]

    Wilson W D, Bisson C L, Baskes M I 1981 Phys. Rev. B 24 5616Google Scholar

    [23]

    Staikov P, Djourelov N 2013 Physica B 413 59Google Scholar

    [24]

    Puska M J, Lanki P, Nieminen R M 1989 J. Phys. Condens. Matter. 1 6081Google Scholar

  • 图 1  超导带材结构

    Fig. 1.  Structure of superconducting tape.

    图 2  H+离子辐照深度

    Fig. 2.  Simulated penetration depth by H+ ion irradiation.

    图 3  不同剂量H+离子辐照离位损伤

    Fig. 3.  Simulated displacement damage by H+ ion irradiation at different doses.

    图 4  不同剂量H+离子辐照前后, 样品S参数及W参数随正电子入射能量的变化关系

    Fig. 4.  Variation of S and W parameters of samples with positron incident energy before and after H+ ion irradiation with different doses.

    图 5  不同剂量H+离子辐照前后样品的S参数随W参数的变化关系

    Fig. 5.  Variation of S parameters with W parameters of samples before and after H+ ion irradiation with different doses.

    图 6  不同剂量H+离子辐照前后样品的拉曼光谱

    Fig. 6.  Raman spectra of samples before and after H+ ionirradiation with different doses.

  • [1]

    Bremmer H, De Haas W J 1936 Physica 3 687Google Scholar

    [2]

    Boorse H A 1935 Nature 135 827Google Scholar

    [3]

    屈翠芬 1982 稀有金属材料与工程 02 104

    Qu C F 1982 Rare Met. Mater. Eng. 02 104

    [4]

    Bondarenko S I, Koverya V P, Krevsun A V, Link S I 2017 Low Temp. Phys. 43 1125Google Scholar

    [5]

    蔡传兵, 池长鑫, 李敏娟, 刘志勇, 鲁玉明, 郭艳群, 白传易, 陆齐, 豆文芝 2019 科学通报 64 827

    Cai C B, Chi C X, Li M J, Liu Z Y, Lu Y M, Guo Y Q, Bai C Y, Lu Q, Dou W Z 2019 Sci. Bull. 64 827

    [6]

    Wang K, Hou Q, Arnab Pal 2021 J. Super. Novel Magn. 34 1379Google Scholar

    [7]

    蔡传兵, 刘志勇, 鲁玉明 2011 中国材料进展 30 1

    Cai C B, Liu Z Y, Lu Y M 2011 Mater. China. 30 1

    [8]

    刘建华, 程军胜, 王秋良 2017 电工电能新技术 36 1Google Scholar

    Liu J H, Cheng J S, Wang Q L 2017 Adv. Technol. Electral. Eng. Energ. 36 1Google Scholar

    [9]

    Dadras S, Falahati S, Dehghani 2018 Physica C 548 65Google Scholar

    [10]

    Palau A, Valles F, Rouco V 2018 Supercond. Sci. Technol. 31 034004Google Scholar

    [11]

    Johnson C L, Bording J K, Zhu Y 2008 Phys. Rev. B 1 775

    [12]

    Foltyn S R, Civale L, Macmanusdriscoll J L 2007 Nat. Mater. 6 631Google Scholar

    [13]

    王雅, 索红莉, 毛磊 2019 无机材料学报 10 1055

    Wang Y, Suo H L, Mao L 2019 J. Inorg. Mater. 10 1055

    [14]

    Senatore C, Alessandrini M, Lucarelli A 2014 Supercond. Sci. Technol. 27 103001Google Scholar

    [15]

    李太广 2021 硕士学位论文 (北京: 中国科学院大学)

    Li T G 2021 M. S. Thesis (Beijing: Chinese Academy of Science University) (in Chinese)

    [16]

    Sueyoshi T, Sogo T, Nishimura T, et al. 2016 Supercond. Sci. Technol. 29 065023Google Scholar

    [17]

    贺玮迪, 张培源, 刘翔 2021 物理学报 70 167803Google Scholar

    He W D, Zhang P Y, Liu X 2021 Acta Phys. Sin. 70 167803Google Scholar

    [18]

    Ramachandran R, David C, Magudapathy P, Rajaraman R, Govindaraj R, Amarendra G 2019 Fusion Eng. Des. 142 55Google Scholar

    [19]

    Zibrov M, Egger W, Heikinheimo J 2020 J. Nucl. Mater. 531 152017Google Scholar

    [20]

    王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (武汉: 湖北科学技术出版社) 第57页

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Apply of Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) p57 (in Chinese)

    [21]

    Thomas J, Bastasz R 1981 J. Appl. Phys. 52 6426Google Scholar

    [22]

    Wilson W D, Bisson C L, Baskes M I 1981 Phys. Rev. B 24 5616Google Scholar

    [23]

    Staikov P, Djourelov N 2013 Physica B 413 59Google Scholar

    [24]

    Puska M J, Lanki P, Nieminen R M 1989 J. Phys. Condens. Matter. 1 6081Google Scholar

  • [1] 郭玺, 左亚路, 崔宝山, 申铁龙, 盛彦斌, 席力. 离子辐照对材料磁性的调控及其应用. 物理学报, 2024, 73(13): 136101. doi: 10.7498/aps.73.20240541
    [2] 董烨, 朱特, 宋亚敏, 叶凤娇, 张鹏, 杨启贵, 刘福雁, 陈雨, 曹兴忠. 低活化马氏体钢中位错对氦辐照缺陷的影响. 物理学报, 2023, 72(18): 187801. doi: 10.7498/aps.72.20230694
    [3] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7-δ超导层中的缺陷演化. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221612
    [4] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [5] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理. 物理学报, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [6] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211857
    [7] 朱特, 曹兴忠. 正电子湮没谱学在金属材料氢/氦行为研究中的应用. 物理学报, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [8] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究. 物理学报, 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [9] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [10] 张丽娟, 张传超, 廖威, 刘建党, 谷冰川, 袁晓东, 叶邦角. 氘化对KH2PO4晶体微观缺陷影响的正电子湮没研究. 物理学报, 2015, 64(9): 097802. doi: 10.7498/aps.64.097802
    [11] 祁宁, 王元为, 王栋, 王丹丹, 陈志权. Co掺杂纳米ZnO微结构的正电子湮没研究. 物理学报, 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [12] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷. 物理学报, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [13] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响. 物理学报, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [14] 王海云, 翁惠民, Ling C. C.. GaN/SiC异质结的慢正电子研究. 物理学报, 2008, 57(9): 5906-5910. doi: 10.7498/aps.57.5906
    [15] 覃怀莉, 薛建明, 赖江南, 王建勇, 苗 琦, 张伟明, 马 磊, 颜 莎, 赵渭江, 顾红雅, 王宇钢. 拟南芥胚的不同区域对MeV离子辐照的响应. 物理学报, 2006, 55(11): 5991-5995. doi: 10.7498/aps.55.5991
    [16] 陈镇平, 薛运才, 苏玉玲, 宫世成, 张金仓. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究. 物理学报, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [17] 孙友梅, 刘 杰, 张崇宏, 王志光, 金运范, 段敬来, 宋 银. 快重离子辐照聚酰亚胺潜径迹的电子能损效应. 物理学报, 2005, 54(11): 5269-5273. doi: 10.7498/aps.54.5269
    [18] 李平林, 张金仓, 曹桂新, 邓冬梅, 刘丽华, 董成, 敬超, 曹世勋. 磁性离子Fe和Ni替代YBCO体系的结构特征和载流子局域化. 物理学报, 2004, 53(4): 1223-1231. doi: 10.7498/aps.53.1223
    [19] 陈镇平, 张金仓, 曹桂新, 曹世勋. La系收缩效应对RBa2Cu3Q7-δ体系局域电子结构和超导电性的影响. 物理学报, 2002, 51(9): 2150-2154. doi: 10.7498/aps.51.2150
    [20] 刘丽华, 董成, 邓冬梅, 陈镇平, 张金仓. Fe掺杂YBCO体系结构变化与团簇效应的正电子实验研究. 物理学报, 2001, 50(4): 769-774. doi: 10.7498/aps.50.769
计量
  • 文章访问数:  2475
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-10
  • 修回日期:  2022-09-28
  • 上网日期:  2022-11-28
  • 刊出日期:  2022-12-05

/

返回文章
返回