-
用于核反应堆的金属结构材料中氢/氦泡的前躯体——(氢/氦)-空位复合体的形成受到温度、辐照剂量等多方面因素的影响, 研究其在材料中的形成和演化行为对气泡形核的理解及先进核反应堆材料的发展起着至关重要的作用. 然而, 受到分辨率的局限, 这种原子尺度的微结构很难用电镜等常规方法进行表征, 以致于该问题的研究上可利用的数据相对较少. 正电子湮没谱学是一种研究材料中微观缺陷的特色表征方法, 近些年来慢正电子束流和新型核探测谱仪技术的不断发展以及基于慢束发展起来的多种实验测试方法的改进, 使正电子湮没技术应用已拓展到金属材料中氢/氦行为的研究领域, 在金属材料表面氢/氦辐照损伤的研究中发挥了重要作用. 本文结合国内外相关进展以及本课题组的一些研究成果评述了正电子湮没谱学在金属材料氢氦行为研究中的应用, 着重讨论了正电子湮没寿命谱、多普勒展宽谱、符合多普勒展宽三种测量方法在如下金属材料氢/氦行为研究中的优势: 1)氢/氦气泡尺寸和浓度的估算; 2)高能氢/氦离子辐照损伤缺陷及缺陷的退火、时效的演化行为; 3)不同形变程度样品中氢/氦与形变缺陷的相互作用; 4)不同能量或剂量氢/氦离子辐照对材料造成的损伤以及氢氦协同作用.An important feature of the irradiation process in nuclear system is the formation of large displacement cascades, in which primary knock-on atoms and secondary particles formed by nuclear reactions generate a considerable number of defects such as dislocations, vacancies and transmutation gases. Predicting and mitigating the adverse effects of damage defect and transmutation hydrogen/helium produced by high-dose neutron irradiation on the mechanical properties of structural materials is the most significant challenge facing the current development of nuclear energy. To solve this problem, understanding the interaction mechanism between hydrogen/helium atoms and micro-defects is a very important breakthrough. Precursors of helium/ hydrogen bubble, small helium/hydrogen-filled vacancy complexes, may play an important role in realizing bubble nucleation, and the formation of these complexes is affected by many factors. However, only a little information about helium/hydrogen-vacancy clusters’ behavior has been obtained in metal/alloy materials. This is mainly limited by the characterization methods, such as the limited resolution of transmission electron microscope (TEM). Helium/hydrogen-vacancy clusters cannot be observed by TEM before the formation of helium bubbles. Applications of positron annihilation to the study of crystal lattice defects started around 1970s, when it was realized that positron annihilation is particularly sensitive to vacancy-type defects and that annihilation properties manifest the nature of each specific type of defect. In recent years, with the continuous development of slow positron beam and the improvement of various experimental testing methods based on slow positron beam, the application of positron annihilation technology has been extended to the research field of hydrogen/helium behavior in metal materials, which plays an important role in studying the hydrogen/helium radiation damage to metal materials. In this review, the basic principles of positron annihilation spectroscopy are briefly discussed and the three most important measurement methods used for hydrogen/helium effect studies are described (i.e. positron annihilation lifetime spectroscopy (PALS), Doppler broadening spectroscopy (DBS), coincidence Doppler broadening spectroscopy (CDBS)). In this paper, the application of positron annihilation spectroscopy to the study of hydrogen/helium behavior in metal materials is reviewed in combination with the reported relevant developments (including our research group’s achieve-ments). The advantages of three commonly used measurement methods in the following specific studies are highlighted: 1) The estimation of bubble size and concentration; 2) irradiation damage induced by hydrogen/helium; 3) the evolution behavior of irradiation-induced defects in the heat treatment process; 4) sy-nergistic effect of hydrogen and helium.
[1] Kaminsky D, Das S K 1978 J. Nucl. Mater. 76-77 256Google Scholar
[2] Stoller R E 1990 J. Nucl. Mater. 174 289Google Scholar
[3] Cook I 2006 Nature Mater. 5 77Google Scholar
[4] Klueh R L, Sokolov M A, Shiba K, Miwa Y, Robertson J P 2000 J. Nucl. Mater. 283-287 478
[5] Shiba K, Hishinuma A 2000 J. Nucl. Mater. 283-287 474Google Scholar
[6] Zinkle S J, Ghoniem N M 2011 J. Nucl. Mater. 417 2Google Scholar
[7] Wakai E, Hashimoto N, Miwa Y, Robertson J P, Klueh R L, Shiba K, Jitsukawa S 2000 J. Nucl. Mater. 283-287 799Google Scholar
[8] Chernikov V N, Zakharov A P, Kazansky P R 1988 J. Nucl. Mater. 155-157 1142Google Scholar
[9] Kawakami T, Tokunaga K, Yoshida N 2006 Fusion Eng. Des. 81 335Google Scholar
[10] Johnson W H 1975 Proceedings of the Royal Society of London 23 168
[11] Tolstolutskaya G D, Ruzhytskiy V V, Kopanets I E, Karpov S A, Bryk V V, Voyevodin V, Garner F A 2006 J. Nucl. Mater. 356 136Google Scholar
[12] Garner F A, Simonen E P, Oliver B, Greenwood L, Grossbeck M L, Wolfer W G Scott P M 2006 J. Nucl. Mater. 356 122Google Scholar
[13] Garner F A, Oliver B, Greenwood L, James M R, Ferguson P D, Maloy S A, Sommer W 2001 J. Nucl. Mater. 296 66Google Scholar
[14] Nagai Y, Takadate K, Tang Z, Ohkubo H, Sunaga H, Takizawa H, Hasegawa M 2003 Phys. Rev. B 67 224202Google Scholar
[15] He S M, van Dijk N H, Schut H, Peekstok E R, van der Zwaag S 2010 Phys. Rev. B 81 094103Google Scholar
[16] Hari Babu S, Rajaraman R, Amarendra G, Govindaraj R, Lalla N P, Dasgupta Arup, Bhalerao Gopal, Sundar C S 2012 Philos. Mag. 92 2848Google Scholar
[17] Cao X Z, Zhang P, Xu Q, Sato K, Tsuchida H, Cheng G D, Wu H B, Jiang X P, Yu R S, Wang B Y, Wei L 2013 J. Phys.: Conference Ser. 443 012017Google Scholar
[18] Lynn K G, Goland A N 1976 Solid State Commun. 18 1549Google Scholar
[19] Jensen K O, Eldrup M, Singh B N, Victoria M 1988 J. Phys. F: Met. Phys. 18 1069Google Scholar
[20] Eldrup M M 1992 Mater. Sci. Forum 105-110 229Google Scholar
[21] Jensen K O, Nieminen R M 1987 Phys. Rev. B 35 2087Google Scholar
[22] Nieminen R M, Laakkonen J 1979 Appl. Phys. 20 181Google Scholar
[23] Eldrup M, Jensen K O 1987 Phys. Status Solidi A 102 145Google Scholar
[24] Jensen K O, Eldrup M, Singh B N, Horsewell A, Victoria M, Sommer W F 1987 Mater. Sci. Forum 15-18 913Google Scholar
[25] Shivachev B L, Troev T, Yoshiie T 2002 J. Nucl. Mater. 306 105Google Scholar
[26] Troev T, Popov E, Staikov P, Nankov N, Yoshiie T 2009 Nucl. Instrum Meth. B 267 535Google Scholar
[27] Kimura A, Kasada R, Sugano R, Hasegawa A, Matsui H 2000 J. Nucl. Mater. 283-287 827Google Scholar
[28] Ishizaki T, Xu Q, Yoshiie T, Nagata S, Troev T 2002 J. Nucl. Mater. 307-311 961Google Scholar
[29] Han L H, Fa T, Zhao Y W 2017 Defect Diffus Forum 373 96Google Scholar
[30] Xu Q, Yamasaki H, Sato K, Yoshiie T 2011 Philos. Mag. Lett. 91 724Google Scholar
[31] Xu Q, Fukumoto K, Ishi Y, Kuriyama Y, Uesugi T, Sato K, Mori Y, Yoshiie T 2016 J. Nucl. Mater. 468 260Google Scholar
[32] 胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义 2015 物理学报 64 247804Google Scholar
Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804Google Scholar
[33] van Veen A, Schut H, de Vries J 1991 AIP Conf. Proc. 218 171Google Scholar
[34] Lu E Y, Cao X Z, Jin S X, Zhang C X, Zhang P, Guo L P, Zhu T, Gong Y H, Wang B Y 2015 Nucl. Instrum Meth. B 356-357 94Google Scholar
[35] Jin S X, Zhang P, Lu E Y, Wang B Y, Yuan D Q, Wei L, Cao X Z 2016 J. Nucl. Mater. 479 390Google Scholar
[36] Zhu T, Jin S X, Zhang P, Song L G, Cao X Z, Wang B Y, 2018 J. Nucl. Mater. 505 69Google Scholar
[37] Bai X M, Voter A F 2010 Science 327 1631Google Scholar
[38] Ackland G 2010 Science 327 1587Google Scholar
[39] Gong Y H, Cao X Z, Jin S X, Lu E Y, Hu Y C, Zhu T, Kuang P, Xu Q, Wang B Y 2016 J. Nucl. Mater. 482 93Google Scholar
[40] 胡远超 2016 硕士学位论文 (郑州: 郑州大学)
Hu Y C 2016 M. S Thesis (Zhengzhou: Zhengzhou University) (in Chinese)
[41] Jiang J, Wu Y C, Liu X B, Wang R S, Nagai Y, Inoue K, Shimizu Y, Toyama T 2015 J. Nucl. Mater. 458 326Google Scholar
[42] Qiu J, Xin Y, Ju X, Guo L P, Wang B Y, Zhong Y R, Huang Q Y, Wu Y C 2009 Nucl. Instrum Meth. B 267 3162Google Scholar
[43] Xin Y, Ju X, Qiu J, Guo L P, Li T C, Luo F F, Zhang P, Cao X Z, Wang B Y 2013 J. Nucl. Mater. 432 120Google Scholar
[44] Yuan D Q, Zheng Y N, Zuo Y, Fan P, Zhou D M, Zhang Q L, Ma X Q, Cui B Q, Chen L H, Jiang W S, Wu Y C, Huang Q Y, Peng L, Cao X Z, Wang B Y, Wei L, Zhu S Y 2014 Chin. Phys. Lett. 31 046101Google Scholar
[45] Tanaka T, Oka K, Ohnuki S 2004 J. Nucl. Mater. 329-333 294
[46] Lee E H, Hunn J D, Rao G R 1999 J. Nucl. Mater. 271-272 385Google Scholar
[47] Zhu Te, Jin S X, Guo L P, Hu Y C, Lu E Y, Wu J P, Wang B Y, Wei L, Cao X Z 2016 Philos. Mag. 96 253Google Scholar
[48] Zhu X L, Zhang Y, Cheng L, Yuan Y, Temmerman Gregory De, Wang B Y, Cao X Z, Lu G H 2016 Nucl. Fusion 56 036010Google Scholar
[49] Kong F H, Qu M, Yan S, Cao X Z, Peng S X, Zhang A L, Xue J M, Wang Y G, Zhang P, Wang B Y 2017 Nucl. Instrum Meth. B 409 192Google Scholar
[50] Wilson W D, Bisson C L, Baskes M I 1981 Phys. Rev. B 24 5616Google Scholar
[51] Thomas J, Bastasz R 1981 J. Appl. Phys. 52 6426Google Scholar
[52] Gong Y H, Jin S X, Zhu T, Cheng L, Cao X Z, Lu G H, Guo L P, Wang B Y 2018 Nucl. Fusion 58 046011Google Scholar
[53] Arakawa K, Imamura R, Ohota K 2001 J. Appl. Phys. 89 4752Google Scholar
[54] Zhu T, Cao X Z, Jin S X, Wu J P, Gong Y H, Lu E Y, Wang B Y, Yu R S, Wei L 2015 J. Nucl. Mater. 466 522Google Scholar
[55] Zhu T, Jin S X, Gong Y H, Lu E Y, Song L G, Xu Q, Guo L P, Cao X Z, Wang B Y 2017 J. Nucl. Mater. 495 244Google Scholar
[56] 朱特, 曹兴忠, 吴建平, 靳硕学, 卢二阳, 龚毅豪, 赖信, 张鹏, 王宝义 2015 功能材料 46 19001Google Scholar
Zhu T, Cao X Z, Wu J P, Jin S X, Lu E Y, Gong Y H, Lai X, Zhang P, Wang B Y 2015 J. Funct. Mater. 46 19001Google Scholar
[57] Blewer R S 1973 Appl. Phys. Lett. 23 593Google Scholar
[58] Asoka-Kumar P, Alatalo M, Ghosh V J 1996 Phys. Rev. Lett. 77 2097Google Scholar
[59] Xu Q, Yoshiie T, Sato K 2006 Phys. Rev. B 73 134115Google Scholar
[60] Zhu T, Wu H B, Cao X Z, Jin S X, Zhang P, Xiao A N, Wang B Y 2017 Phys. Status Solidi A 214 1600785Google Scholar
[61] Alatalo M, Kauppinen H, Saarinen K 1995 Phys. Rev. B 51 4176Google Scholar
[62] Myler U, Goldberg R D, Knights A P 1996 Appl. Phys. Lett. 69 3333Google Scholar
[63] Cao X Z, Zhu T, Jin S X, Kuang P, Zhang P, Lu E Y, Gong Y H, Guo L P, Wang B Y 2017 Appl. Phys. A 123 177
[64] Sabelova V, Krsjak V, Kuriplach J 2014 J. Nucl. Mater. 450 54Google Scholar
[65] Sato K, Ikemura K, Krsjak V, Vieh C, Brun R, Xu Q, Yoshiie T, Dai Y 2016 J. Nucl. Mater. 468 281Google Scholar
[66] Xu Q, Ishizaki T, Sato K, Yoshiie T, Nagata S 2006 Mater. Trans. 47 2885Google Scholar
-
-
[1] Kaminsky D, Das S K 1978 J. Nucl. Mater. 76-77 256Google Scholar
[2] Stoller R E 1990 J. Nucl. Mater. 174 289Google Scholar
[3] Cook I 2006 Nature Mater. 5 77Google Scholar
[4] Klueh R L, Sokolov M A, Shiba K, Miwa Y, Robertson J P 2000 J. Nucl. Mater. 283-287 478
[5] Shiba K, Hishinuma A 2000 J. Nucl. Mater. 283-287 474Google Scholar
[6] Zinkle S J, Ghoniem N M 2011 J. Nucl. Mater. 417 2Google Scholar
[7] Wakai E, Hashimoto N, Miwa Y, Robertson J P, Klueh R L, Shiba K, Jitsukawa S 2000 J. Nucl. Mater. 283-287 799Google Scholar
[8] Chernikov V N, Zakharov A P, Kazansky P R 1988 J. Nucl. Mater. 155-157 1142Google Scholar
[9] Kawakami T, Tokunaga K, Yoshida N 2006 Fusion Eng. Des. 81 335Google Scholar
[10] Johnson W H 1975 Proceedings of the Royal Society of London 23 168
[11] Tolstolutskaya G D, Ruzhytskiy V V, Kopanets I E, Karpov S A, Bryk V V, Voyevodin V, Garner F A 2006 J. Nucl. Mater. 356 136Google Scholar
[12] Garner F A, Simonen E P, Oliver B, Greenwood L, Grossbeck M L, Wolfer W G Scott P M 2006 J. Nucl. Mater. 356 122Google Scholar
[13] Garner F A, Oliver B, Greenwood L, James M R, Ferguson P D, Maloy S A, Sommer W 2001 J. Nucl. Mater. 296 66Google Scholar
[14] Nagai Y, Takadate K, Tang Z, Ohkubo H, Sunaga H, Takizawa H, Hasegawa M 2003 Phys. Rev. B 67 224202Google Scholar
[15] He S M, van Dijk N H, Schut H, Peekstok E R, van der Zwaag S 2010 Phys. Rev. B 81 094103Google Scholar
[16] Hari Babu S, Rajaraman R, Amarendra G, Govindaraj R, Lalla N P, Dasgupta Arup, Bhalerao Gopal, Sundar C S 2012 Philos. Mag. 92 2848Google Scholar
[17] Cao X Z, Zhang P, Xu Q, Sato K, Tsuchida H, Cheng G D, Wu H B, Jiang X P, Yu R S, Wang B Y, Wei L 2013 J. Phys.: Conference Ser. 443 012017Google Scholar
[18] Lynn K G, Goland A N 1976 Solid State Commun. 18 1549Google Scholar
[19] Jensen K O, Eldrup M, Singh B N, Victoria M 1988 J. Phys. F: Met. Phys. 18 1069Google Scholar
[20] Eldrup M M 1992 Mater. Sci. Forum 105-110 229Google Scholar
[21] Jensen K O, Nieminen R M 1987 Phys. Rev. B 35 2087Google Scholar
[22] Nieminen R M, Laakkonen J 1979 Appl. Phys. 20 181Google Scholar
[23] Eldrup M, Jensen K O 1987 Phys. Status Solidi A 102 145Google Scholar
[24] Jensen K O, Eldrup M, Singh B N, Horsewell A, Victoria M, Sommer W F 1987 Mater. Sci. Forum 15-18 913Google Scholar
[25] Shivachev B L, Troev T, Yoshiie T 2002 J. Nucl. Mater. 306 105Google Scholar
[26] Troev T, Popov E, Staikov P, Nankov N, Yoshiie T 2009 Nucl. Instrum Meth. B 267 535Google Scholar
[27] Kimura A, Kasada R, Sugano R, Hasegawa A, Matsui H 2000 J. Nucl. Mater. 283-287 827Google Scholar
[28] Ishizaki T, Xu Q, Yoshiie T, Nagata S, Troev T 2002 J. Nucl. Mater. 307-311 961Google Scholar
[29] Han L H, Fa T, Zhao Y W 2017 Defect Diffus Forum 373 96Google Scholar
[30] Xu Q, Yamasaki H, Sato K, Yoshiie T 2011 Philos. Mag. Lett. 91 724Google Scholar
[31] Xu Q, Fukumoto K, Ishi Y, Kuriyama Y, Uesugi T, Sato K, Mori Y, Yoshiie T 2016 J. Nucl. Mater. 468 260Google Scholar
[32] 胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义 2015 物理学报 64 247804Google Scholar
Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804Google Scholar
[33] van Veen A, Schut H, de Vries J 1991 AIP Conf. Proc. 218 171Google Scholar
[34] Lu E Y, Cao X Z, Jin S X, Zhang C X, Zhang P, Guo L P, Zhu T, Gong Y H, Wang B Y 2015 Nucl. Instrum Meth. B 356-357 94Google Scholar
[35] Jin S X, Zhang P, Lu E Y, Wang B Y, Yuan D Q, Wei L, Cao X Z 2016 J. Nucl. Mater. 479 390Google Scholar
[36] Zhu T, Jin S X, Zhang P, Song L G, Cao X Z, Wang B Y, 2018 J. Nucl. Mater. 505 69Google Scholar
[37] Bai X M, Voter A F 2010 Science 327 1631Google Scholar
[38] Ackland G 2010 Science 327 1587Google Scholar
[39] Gong Y H, Cao X Z, Jin S X, Lu E Y, Hu Y C, Zhu T, Kuang P, Xu Q, Wang B Y 2016 J. Nucl. Mater. 482 93Google Scholar
[40] 胡远超 2016 硕士学位论文 (郑州: 郑州大学)
Hu Y C 2016 M. S Thesis (Zhengzhou: Zhengzhou University) (in Chinese)
[41] Jiang J, Wu Y C, Liu X B, Wang R S, Nagai Y, Inoue K, Shimizu Y, Toyama T 2015 J. Nucl. Mater. 458 326Google Scholar
[42] Qiu J, Xin Y, Ju X, Guo L P, Wang B Y, Zhong Y R, Huang Q Y, Wu Y C 2009 Nucl. Instrum Meth. B 267 3162Google Scholar
[43] Xin Y, Ju X, Qiu J, Guo L P, Li T C, Luo F F, Zhang P, Cao X Z, Wang B Y 2013 J. Nucl. Mater. 432 120Google Scholar
[44] Yuan D Q, Zheng Y N, Zuo Y, Fan P, Zhou D M, Zhang Q L, Ma X Q, Cui B Q, Chen L H, Jiang W S, Wu Y C, Huang Q Y, Peng L, Cao X Z, Wang B Y, Wei L, Zhu S Y 2014 Chin. Phys. Lett. 31 046101Google Scholar
[45] Tanaka T, Oka K, Ohnuki S 2004 J. Nucl. Mater. 329-333 294
[46] Lee E H, Hunn J D, Rao G R 1999 J. Nucl. Mater. 271-272 385Google Scholar
[47] Zhu Te, Jin S X, Guo L P, Hu Y C, Lu E Y, Wu J P, Wang B Y, Wei L, Cao X Z 2016 Philos. Mag. 96 253Google Scholar
[48] Zhu X L, Zhang Y, Cheng L, Yuan Y, Temmerman Gregory De, Wang B Y, Cao X Z, Lu G H 2016 Nucl. Fusion 56 036010Google Scholar
[49] Kong F H, Qu M, Yan S, Cao X Z, Peng S X, Zhang A L, Xue J M, Wang Y G, Zhang P, Wang B Y 2017 Nucl. Instrum Meth. B 409 192Google Scholar
[50] Wilson W D, Bisson C L, Baskes M I 1981 Phys. Rev. B 24 5616Google Scholar
[51] Thomas J, Bastasz R 1981 J. Appl. Phys. 52 6426Google Scholar
[52] Gong Y H, Jin S X, Zhu T, Cheng L, Cao X Z, Lu G H, Guo L P, Wang B Y 2018 Nucl. Fusion 58 046011Google Scholar
[53] Arakawa K, Imamura R, Ohota K 2001 J. Appl. Phys. 89 4752Google Scholar
[54] Zhu T, Cao X Z, Jin S X, Wu J P, Gong Y H, Lu E Y, Wang B Y, Yu R S, Wei L 2015 J. Nucl. Mater. 466 522Google Scholar
[55] Zhu T, Jin S X, Gong Y H, Lu E Y, Song L G, Xu Q, Guo L P, Cao X Z, Wang B Y 2017 J. Nucl. Mater. 495 244Google Scholar
[56] 朱特, 曹兴忠, 吴建平, 靳硕学, 卢二阳, 龚毅豪, 赖信, 张鹏, 王宝义 2015 功能材料 46 19001Google Scholar
Zhu T, Cao X Z, Wu J P, Jin S X, Lu E Y, Gong Y H, Lai X, Zhang P, Wang B Y 2015 J. Funct. Mater. 46 19001Google Scholar
[57] Blewer R S 1973 Appl. Phys. Lett. 23 593Google Scholar
[58] Asoka-Kumar P, Alatalo M, Ghosh V J 1996 Phys. Rev. Lett. 77 2097Google Scholar
[59] Xu Q, Yoshiie T, Sato K 2006 Phys. Rev. B 73 134115Google Scholar
[60] Zhu T, Wu H B, Cao X Z, Jin S X, Zhang P, Xiao A N, Wang B Y 2017 Phys. Status Solidi A 214 1600785Google Scholar
[61] Alatalo M, Kauppinen H, Saarinen K 1995 Phys. Rev. B 51 4176Google Scholar
[62] Myler U, Goldberg R D, Knights A P 1996 Appl. Phys. Lett. 69 3333Google Scholar
[63] Cao X Z, Zhu T, Jin S X, Kuang P, Zhang P, Lu E Y, Gong Y H, Guo L P, Wang B Y 2017 Appl. Phys. A 123 177
[64] Sabelova V, Krsjak V, Kuriplach J 2014 J. Nucl. Mater. 450 54Google Scholar
[65] Sato K, Ikemura K, Krsjak V, Vieh C, Brun R, Xu Q, Yoshiie T, Dai Y 2016 J. Nucl. Mater. 468 281Google Scholar
[66] Xu Q, Ishizaki T, Sato K, Yoshiie T, Nagata S 2006 Mater. Trans. 47 2885Google Scholar
计量
- 文章访问数: 9896
- PDF下载量: 207
- 被引次数: 0