搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属钨中氦行为的分子动力学模拟

汪俊 张宝玲 周宇璐 侯氢

引用本文:
Citation:

金属钨中氦行为的分子动力学模拟

汪俊, 张宝玲, 周宇璐, 侯氢

Molecular dynamics simulation of helium behavior in tungsten matrix

Wang Jun, Zhang Bao-Ling, Zhou Yu-Lu, Hou Qing
PDF
导出引用
  • 采用分子动力学方法模拟了氦在金属钨中的扩散聚集行为. 首先,建立了氦与钨原子间相互作用势,短程部分采用ZBL势形式,长程部分采用从头算法数据,实现了两者之间的平滑连接. 通过计算氦在钨中不同间隙位的形成能发现,单个氦原子更易存在于金属钨中的四面体间隙位,这与最新的研究成果是一致的. 在4001200 K的温度范围内,考察了氦原子在金属钨中的扩散行为,获得了扩散迁移能,其值介于实验值和从头算法结果之间. 最后,研究了氦的聚集行为,从能量的角度考察了氦团簇形成初期的生长机理. 研究发现,在氦团簇形成初期,氦团簇对氦的结合能随着氦团簇的生长有逐渐增大的趋势,说明氦团簇吸收氦的能力逐渐增强.
    The helium behavior in tungsten matrix is investigated by means of molecular dynamics. Firstly, the He-W potential is created by combining the ZBL potential with the data from an ab intio method. The formation energy calculations predict that the most stable configuration for helium in interstitial position is the tetrahedral site, which is in good agreement with recent research results. The helium diffusion is simulated in great detail in a temperature range from 400 K to 1200 K, and the migration energy is obtained to be between the experimental data and the ab intio calculation result. Finally, the mechanism of helium accumulation in its initial stage is investigated from the viewpoint of energy. It is found that as the helium cluster grows, the binding energy of each additional helium atom to the cluster tends to increase, which is conducible to the further growth of the helium cluster.
    • 基金项目: 国家自然科学基金(批准号:10775101)和国家磁约束聚变项目(批准号:2009GB106004)资助的课题.
    [1]

    Federici G, Skinner C H, Brooks J N, Coad J P, Grisolia C, Haasz A A, Hassanein A, Philipps V, Pitcher C S, Roth J, Wampier W R, Whyte D G 2001 Nucl. Fusion 41 1967

    [2]

    Bolt H, Barabash V, Federici G, Linke J, Loarte A, Roth J, Sato K 2002 J. Nucl. Mater. 307-311 43

    [3]
    [4]
    [5]

    Barabash V, Federici G, Matera R, Raffray A R 1999 Phys. Scripta T 81 74

    [6]
    [7]

    Federici G, Wuerz H, Janeschitz G, Tivey R 2002 Fusion Eng. Des. 61-62 81

    [8]
    [9]

    Henriksson K O E, Nordlund K, Keinonen J 2006 Nucl. Instrum. Meth. B 244 377

    [10]

    Ge C C, Zhou Z J, Song S X, Du J, Zhong Z H 2007 J. Nucl. Mater.363-365 1211

    [11]
    [12]

    Kornelsen E V 1972 Radiat. Eff. 13 227

    [13]
    [14]
    [15]

    Kornelsen E V, van Gorkum A A 1980 J. Nucl. Mater. 92 79

    [16]

    Walls J M, Boothby R M, Southworth H N 1976 Surf. Sci. 61 419

    [17]
    [18]

    Nicholson R J K, Walls J M 1978 J. Nucl. Mater. 76-77 251

    [19]
    [20]
    [21]

    Henriksson K O E, Nordlund K, Keinonen J, Sundholm D, Patzschkze M 2004 Phys. Scripta T 108 95

    [22]
    [23]

    Becquart C S, Domain C 2006 Phys. Rev. Lett. 97 196402

    [24]
    [25]

    Becquart C S, Domain C 2007 Nucl. Instrum. Meth. B 255 23

    [26]

    Lee S C, Choi J H, Lee J G 2009 J. Nucl. Mater. 383 244

    [27]
    [28]
    [29]

    Nieminen R M 1991 Fundamentals Aspects of Inert Gases in Solid (New York: Plenum) p3

    [30]
    [31]

    Derlet P M, Nguyen-Manh D, Dudarev S L 2007 Phys. Rev. B 76 054107

    [32]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Matter (New York: Pergamon)

    [33]
    [34]
    [35]

    Delley B 1990 J. Chem. Phys. 92 508

    [36]

    Winte G 1995 Genetic Algorithm in Engineering and Science (New York: Wiley) p1

    [37]
    [38]
    [39]

    Finnis M W, Agnew P, Foreman A J E 1991 Phys. Rev. B 44 567.

    [40]

    Hou Q, Hou M, Bardotti L, Prevel B, Melinon P, Perez A 2000 Phys. Rev. B 62 2825

    [41]
    [42]

    Boisvert G, Lewis L J 1996 Phys. Rev. B 54 2880

    [43]
    [44]

    Wagner A, Seidman D N 1979 Phys. Rev. Lett. 42 515

    [45]
    [46]
    [47]

    Amano J, Seidman D N 1984 J. Appl. Phys. 56 983

    [48]
    [49]

    Soltan A S, Vassen R, Jung P 1991 J. Appl. Phys. 70 793

    [50]

    Xie Z, Hou Q, Wang J, Sun T Y, Long X G, Luo S Z 2008 Acta Phys. Sin. 57 5159(in Chinese)[谢 朝、侯 氢、汪 俊、孙铁英、龙兴贵、罗顺忠 2008 物理学报 57 5159]

    [51]
    [52]
    [53]

    Wang J, Hou Q, Sun T Y, Long X G, Wu X C, Luo S Z 2007 J. Appl. Phys. 102 093510

    [54]
    [55]

    Wang J, Hou Q, Sun T Y, Wu Z C, Long X G, Wu X C, Luo S Z 2006 Chin. Phys. Lett. 23 1666

    [56]
    [57]

    Wang J, Hou Q 2009 Acta Phys. Sin. 58 6408(in Chinese)[汪 俊、侯 氢 2009 物理学报 58 6408]

  • [1]

    Federici G, Skinner C H, Brooks J N, Coad J P, Grisolia C, Haasz A A, Hassanein A, Philipps V, Pitcher C S, Roth J, Wampier W R, Whyte D G 2001 Nucl. Fusion 41 1967

    [2]

    Bolt H, Barabash V, Federici G, Linke J, Loarte A, Roth J, Sato K 2002 J. Nucl. Mater. 307-311 43

    [3]
    [4]
    [5]

    Barabash V, Federici G, Matera R, Raffray A R 1999 Phys. Scripta T 81 74

    [6]
    [7]

    Federici G, Wuerz H, Janeschitz G, Tivey R 2002 Fusion Eng. Des. 61-62 81

    [8]
    [9]

    Henriksson K O E, Nordlund K, Keinonen J 2006 Nucl. Instrum. Meth. B 244 377

    [10]

    Ge C C, Zhou Z J, Song S X, Du J, Zhong Z H 2007 J. Nucl. Mater.363-365 1211

    [11]
    [12]

    Kornelsen E V 1972 Radiat. Eff. 13 227

    [13]
    [14]
    [15]

    Kornelsen E V, van Gorkum A A 1980 J. Nucl. Mater. 92 79

    [16]

    Walls J M, Boothby R M, Southworth H N 1976 Surf. Sci. 61 419

    [17]
    [18]

    Nicholson R J K, Walls J M 1978 J. Nucl. Mater. 76-77 251

    [19]
    [20]
    [21]

    Henriksson K O E, Nordlund K, Keinonen J, Sundholm D, Patzschkze M 2004 Phys. Scripta T 108 95

    [22]
    [23]

    Becquart C S, Domain C 2006 Phys. Rev. Lett. 97 196402

    [24]
    [25]

    Becquart C S, Domain C 2007 Nucl. Instrum. Meth. B 255 23

    [26]

    Lee S C, Choi J H, Lee J G 2009 J. Nucl. Mater. 383 244

    [27]
    [28]
    [29]

    Nieminen R M 1991 Fundamentals Aspects of Inert Gases in Solid (New York: Plenum) p3

    [30]
    [31]

    Derlet P M, Nguyen-Manh D, Dudarev S L 2007 Phys. Rev. B 76 054107

    [32]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Matter (New York: Pergamon)

    [33]
    [34]
    [35]

    Delley B 1990 J. Chem. Phys. 92 508

    [36]

    Winte G 1995 Genetic Algorithm in Engineering and Science (New York: Wiley) p1

    [37]
    [38]
    [39]

    Finnis M W, Agnew P, Foreman A J E 1991 Phys. Rev. B 44 567.

    [40]

    Hou Q, Hou M, Bardotti L, Prevel B, Melinon P, Perez A 2000 Phys. Rev. B 62 2825

    [41]
    [42]

    Boisvert G, Lewis L J 1996 Phys. Rev. B 54 2880

    [43]
    [44]

    Wagner A, Seidman D N 1979 Phys. Rev. Lett. 42 515

    [45]
    [46]
    [47]

    Amano J, Seidman D N 1984 J. Appl. Phys. 56 983

    [48]
    [49]

    Soltan A S, Vassen R, Jung P 1991 J. Appl. Phys. 70 793

    [50]

    Xie Z, Hou Q, Wang J, Sun T Y, Long X G, Luo S Z 2008 Acta Phys. Sin. 57 5159(in Chinese)[谢 朝、侯 氢、汪 俊、孙铁英、龙兴贵、罗顺忠 2008 物理学报 57 5159]

    [51]
    [52]
    [53]

    Wang J, Hou Q, Sun T Y, Long X G, Wu X C, Luo S Z 2007 J. Appl. Phys. 102 093510

    [54]
    [55]

    Wang J, Hou Q, Sun T Y, Wu Z C, Long X G, Wu X C, Luo S Z 2006 Chin. Phys. Lett. 23 1666

    [56]
    [57]

    Wang J, Hou Q 2009 Acta Phys. Sin. 58 6408(in Chinese)[汪 俊、侯 氢 2009 物理学报 58 6408]

  • [1] 魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平. 中子对碲锌镉辐照损伤模拟研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221195
    [2] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [3] 朱特, 曹兴忠. 正电子湮没谱学在金属材料氢/氦行为研究中的应用. 物理学报, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [4] 梁晋洁, 高宁, 李玉红. 体心立方Fe中\begin{document}${ \langle 100 \rangle}$\end{document}位错环对微裂纹扩展影响的分子动力学研究. 物理学报, 2020, 69(11): 116102. doi: 10.7498/aps.69.20200317
    [5] 冉琴, 王欢, 钟睿, 伍建春, 邹宇, 汪俊. 钨中不同构型的双自间隙原子扩散行为研究. 物理学报, 2019, 68(12): 126701. doi: 10.7498/aps.68.20190310
    [6] 张春艳, 刘显明. 氢团簇在飞秒强激光场中的动力学行为. 物理学报, 2015, 64(16): 163601. doi: 10.7498/aps.64.163601
    [7] 崔振国, 勾成俊, 侯氢, 毛莉, 周晓松. 低能中子在锆中产生的辐照损伤的计算机模拟研究. 物理学报, 2013, 62(15): 156105. doi: 10.7498/aps.62.156105
    [8] 姜少宁, 万发荣, 龙毅, 刘传歆, 詹倩, 大貫惣明. 氦、氘对纯铁辐照缺陷的影响. 物理学报, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [9] 司丽娜, 郭丹, 雒建斌. 氧化硅团簇切削单晶硅粗糙峰的分子动力学模拟研究. 物理学报, 2012, 61(16): 168103. doi: 10.7498/aps.61.168103
    [10] 张英杰, 肖绪洋, 李永强, 颜云辉. 分子动力学模拟Cu(010)基体对负载Co-Cu双金属团簇熔化过程的影响. 物理学报, 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [11] 朱勇, 李宝华, 谢国锋. 质子对BaTiO3薄膜辐照损伤的计算机模拟. 物理学报, 2012, 61(4): 046103. doi: 10.7498/aps.61.046103
    [12] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟. 物理学报, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [13] 贺新福, 杨文, 樊胜. 论FeCr合金辐照损伤的多尺度模拟. 物理学报, 2009, 58(12): 8657-8669. doi: 10.7498/aps.58.8657
    [14] 汪俊, 侯氢. 金属钛中氦团簇生长行为的分子动力学研究. 物理学报, 2009, 58(9): 6408-6412. doi: 10.7498/aps.58.6408
    [15] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究. 物理学报, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [16] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响. 物理学报, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [17] 谢 朝, 侯 氢, 汪 俊, 孙铁英, 龙兴贵, 罗顺忠. 金属钛中氦团簇融合的分子动力学模拟. 物理学报, 2008, 57(8): 5159-5164. doi: 10.7498/aps.57.5159
    [18] 唐 鑫, 张 超, 张庆瑜. Cu(111)三维表面岛对表面原子扩散影响的分子动力学研究. 物理学报, 2005, 54(12): 5797-5803. doi: 10.7498/aps.54.5797
    [19] 王 音, 李 鹏, 宁西京. C36团簇自组装的分子动力学研究. 物理学报, 2005, 54(6): 2847-2852. doi: 10.7498/aps.54.2847
    [20] 叶子燕, 张庆瑜. 低能Pt原子团簇沉积过程的分子动力学模拟. 物理学报, 2002, 51(12): 2798-2803. doi: 10.7498/aps.51.2798
计量
  • 文章访问数:  8167
  • PDF下载量:  1423
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-12
  • 修回日期:  2011-01-05
  • 刊出日期:  2011-05-05

金属钨中氦行为的分子动力学模拟

  • 1. 四川大学原子核科学技术研究所辐射物理及技术教育部重点实验室,成都 610064
    基金项目: 国家自然科学基金(批准号:10775101)和国家磁约束聚变项目(批准号:2009GB106004)资助的课题.

摘要: 采用分子动力学方法模拟了氦在金属钨中的扩散聚集行为. 首先,建立了氦与钨原子间相互作用势,短程部分采用ZBL势形式,长程部分采用从头算法数据,实现了两者之间的平滑连接. 通过计算氦在钨中不同间隙位的形成能发现,单个氦原子更易存在于金属钨中的四面体间隙位,这与最新的研究成果是一致的. 在4001200 K的温度范围内,考察了氦原子在金属钨中的扩散行为,获得了扩散迁移能,其值介于实验值和从头算法结果之间. 最后,研究了氦的聚集行为,从能量的角度考察了氦团簇形成初期的生长机理. 研究发现,在氦团簇形成初期,氦团簇对氦的结合能随着氦团簇的生长有逐渐增大的趋势,说明氦团簇吸收氦的能力逐渐增强.

English Abstract

参考文献 (57)

目录

    /

    返回文章
    返回