搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能中子在锆中产生的辐照损伤的计算机模拟研究

崔振国 勾成俊 侯氢 毛莉 周晓松

引用本文:
Citation:

低能中子在锆中产生的辐照损伤的计算机模拟研究

崔振国, 勾成俊, 侯氢, 毛莉, 周晓松

Computer simulation of radiation damage caused by low energy neutron in zirconium

Cui Zhen-Guo, Gou Cheng-Jun, Hou Qing, Mao Li, Zhou Xiao-Song
PDF
导出引用
  • 以GEANT4为基础采用蒙特卡罗方法对能量为1 MeV的中子在锆 材料中的输运过程进行了模拟分析. 首先计算得出: 反冲核的能量主要分布在1 keV和15 keV之间, 中子和靶核发生两次弹性碰撞的平均空间距离为29.47 mm. 由于中子和靶核在发生连续两次弹性碰撞过程中产生的两个反冲核能量较低, 它们的空间距离又比较大, 由此可以推测出: 由初级离位原子产生的后续级联碰撞可以看做是一系列独立的子级联碰撞过程, 同时也计算了中子在靶材的不同深度区域内产生的反冲核数目和平均能量. 其次, 利用蒙卡方法计算得到的结果, 采用分子动力学方法, 分别计算了五种不同能量下的初级离位原子产生的级联碰撞情况, 给出了初级离位原子的能量与其产生的次级离位原子数目之间的关系以 及不同能量下的初级离位原子产生的损伤区域范围等情况, 通过蒙特卡罗方法和分子动力学方法的结合, 给出了能量为1 MeV的中子在锆材料中产生的初级辐照损伤分布图像.
    Based on the Geant4 program-the package for simulating particle transportation in materials, simulations of the irradiation by neutrons with 1 MeV energy in zirconium were conducted The two adjacent elastic collisions between injected neutron and target atoms produce numerous primary knock-on atoms (PKA). It is found that the average distance of adjacent collisions is 29.47 mm, and the kinetic energy of most PKAs ranges from 1 keV to 15 keV. The damaged area induced by the PKAs is in nanometer scale, which is far less than the distance between the two PKAs. According to the fact that, the subsequent cascade collisions caused by the two PKAs can be considered as a set of independent processes, it is reasonable to study the cascade collisions of the PKAs by means of molecular dynamics method. The cascade collision progress of PKAs with different energies was performed, and the number of interstitial atoms and the size of the damaged regions in the material were extracted. Through the combination of Monte Carlo method and molecular dynamics simulation, a complete physical picture of the primary damage caused by the 1 MeV neutrons in the zirconium was obtained.
    • 基金项目: 国家自然科学基金 (批准号: 91126001, 11175124) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91126001, 11175124).
    [1]

    Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501 (in Chinese) [于全芝, 殷雯, 梁天骄 2011 物理学报 60 052501]

    [2]

    Gary W S 2007 Fundamentals of Radiation Materials Science (Berlin: Springer) p12

    [3]

    Office of Basic Energy Sciences 2006 Basic Research Needs for Advanced Nuclear Energy Systems (U.S: Department Of Energy)

    [4]

    Samaras M, Victoria M, Hoffelner W 2009 J. Nucl. Mater 392 286

    [5]

    Bacon J D, Calder F A, Gao F 1997 J. Nucl. Mater. 251 1

    [6]

    Trachenko K, Zarkadoula E, Todorov T I, Dove T M, Dunstan J D, Nordlund K 2012 Nuclear Instruments and Methods in Physics Research B 277 6

    [7]

    Souidi A, Hou M, Becquart S C, Malerba L, Domain C, Stoller E R 2011 J. Nucl. Mater. 419 122

    [8]

    Maire M, Wright D H, Urban L 2004 GEANT4 Physics Reference Manual

    [9]

    Mendelev M I, Ackland G J 2007 Phil. Mag. Lett. 87 349

    [10]

    Dierckx R 1987 J. Nucl. Mater. 144 214

    [11]

    Yu G, Li X Q, Sha J J, Yu J N, Xu S Y, Cai C H 2004 Chinese Jounal of Nuclear Science and Engineering 24 139 (in Chinese) [郁刚, 李晓强, 沙建军, 郁金南, 许淑艳, 蔡崇海 2004 核科学与工程 24 139]

    [12]

    Gao F, Bacon J D, Flewitt J E P, Lewis A T 1997 J. Nucl. Mater. 249 77

    [13]

    Yu J N 2007 Materials Irradiation effect (Beijing: Chemical Industry Press) (in Chinese) [郁金南 2007 材料辐照效应 (北京: 化学工业出版社) 第125页]

    [14]

    Bacon J D, Gao F, Osetsky Y N 2000 J. Nucl. Mater. 276 1

    [15]

    Heinisch H L, Singh B N 1992 Phil. Mag. A 67 407

    [16]

    Takahashi A, Hirose K, Soneda N, Kikuchi M 2006 Key Engineering Materials 306 923

    [17]

    Stoller E R 2000 Nuclear Engineering and Design 195 129

    [18]

    Gao F, Bacon D J, Howe L M, So C B 2001 J. Nucl. Mater. 294 288

  • [1]

    Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501 (in Chinese) [于全芝, 殷雯, 梁天骄 2011 物理学报 60 052501]

    [2]

    Gary W S 2007 Fundamentals of Radiation Materials Science (Berlin: Springer) p12

    [3]

    Office of Basic Energy Sciences 2006 Basic Research Needs for Advanced Nuclear Energy Systems (U.S: Department Of Energy)

    [4]

    Samaras M, Victoria M, Hoffelner W 2009 J. Nucl. Mater 392 286

    [5]

    Bacon J D, Calder F A, Gao F 1997 J. Nucl. Mater. 251 1

    [6]

    Trachenko K, Zarkadoula E, Todorov T I, Dove T M, Dunstan J D, Nordlund K 2012 Nuclear Instruments and Methods in Physics Research B 277 6

    [7]

    Souidi A, Hou M, Becquart S C, Malerba L, Domain C, Stoller E R 2011 J. Nucl. Mater. 419 122

    [8]

    Maire M, Wright D H, Urban L 2004 GEANT4 Physics Reference Manual

    [9]

    Mendelev M I, Ackland G J 2007 Phil. Mag. Lett. 87 349

    [10]

    Dierckx R 1987 J. Nucl. Mater. 144 214

    [11]

    Yu G, Li X Q, Sha J J, Yu J N, Xu S Y, Cai C H 2004 Chinese Jounal of Nuclear Science and Engineering 24 139 (in Chinese) [郁刚, 李晓强, 沙建军, 郁金南, 许淑艳, 蔡崇海 2004 核科学与工程 24 139]

    [12]

    Gao F, Bacon J D, Flewitt J E P, Lewis A T 1997 J. Nucl. Mater. 249 77

    [13]

    Yu J N 2007 Materials Irradiation effect (Beijing: Chemical Industry Press) (in Chinese) [郁金南 2007 材料辐照效应 (北京: 化学工业出版社) 第125页]

    [14]

    Bacon J D, Gao F, Osetsky Y N 2000 J. Nucl. Mater. 276 1

    [15]

    Heinisch H L, Singh B N 1992 Phil. Mag. A 67 407

    [16]

    Takahashi A, Hirose K, Soneda N, Kikuchi M 2006 Key Engineering Materials 306 923

    [17]

    Stoller E R 2000 Nuclear Engineering and Design 195 129

    [18]

    Gao F, Bacon D J, Howe L M, So C B 2001 J. Nucl. Mater. 294 288

  • [1] 魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平. 中子对碲锌镉辐照损伤模拟研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221195
    [2] 杨辉, 冯泽华, 王贺然, 张云鹏, 陈铮, 信天缘, 宋小蓉, 吴璐, 张静. Fe-Cr合金辐照空洞微结构演化的相场法模拟. 物理学报, 2021, 70(5): 054601. doi: 10.7498/aps.70.20201457
    [3] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [4] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [6] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应. 物理学报, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [7] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究. 物理学报, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [8] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [9] 朱勇, 李宝华, 谢国锋. 质子对BaTiO3薄膜辐照损伤的计算机模拟. 物理学报, 2012, 61(4): 046103. doi: 10.7498/aps.61.046103
    [10] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [11] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [12] 刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林. MgO(001)表面上沉积MgO薄膜过程的分子动力学模拟. 物理学报, 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [13] 贺新福, 杨文, 樊胜. 论FeCr合金辐照损伤的多尺度模拟. 物理学报, 2009, 58(12): 8657-8669. doi: 10.7498/aps.58.8657
    [14] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响. 物理学报, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [15] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [16] 刘 浩, 柯孚久, 潘 晖, 周 敏. 铜-铝扩散焊及拉伸的分子动力学模拟. 物理学报, 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [17] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [18] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  3539
  • PDF下载量:  1038
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-27
  • 修回日期:  2013-04-15
  • 刊出日期:  2013-08-05

低能中子在锆中产生的辐照损伤的计算机模拟研究

  • 1. 四川大学原子核科学技术研究所, 辐射物理及技术教育部重点实验室, 成都 610065;
  • 2. 中国工程物理研究院核物理与化学研究所, 绵阳 621900
    基金项目: 国家自然科学基金 (批准号: 91126001, 11175124) 资助的课题.

摘要: 以GEANT4为基础采用蒙特卡罗方法对能量为1 MeV的中子在锆 材料中的输运过程进行了模拟分析. 首先计算得出: 反冲核的能量主要分布在1 keV和15 keV之间, 中子和靶核发生两次弹性碰撞的平均空间距离为29.47 mm. 由于中子和靶核在发生连续两次弹性碰撞过程中产生的两个反冲核能量较低, 它们的空间距离又比较大, 由此可以推测出: 由初级离位原子产生的后续级联碰撞可以看做是一系列独立的子级联碰撞过程, 同时也计算了中子在靶材的不同深度区域内产生的反冲核数目和平均能量. 其次, 利用蒙卡方法计算得到的结果, 采用分子动力学方法, 分别计算了五种不同能量下的初级离位原子产生的级联碰撞情况, 给出了初级离位原子的能量与其产生的次级离位原子数目之间的关系以 及不同能量下的初级离位原子产生的损伤区域范围等情况, 通过蒙特卡罗方法和分子动力学方法的结合, 给出了能量为1 MeV的中子在锆材料中产生的初级辐照损伤分布图像.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回