搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中子对碲锌镉辐照损伤模拟研究

魏雯静 高旭东 吕亮亮 许楠楠 李公平

引用本文:
Citation:

中子对碲锌镉辐照损伤模拟研究

魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平

Simulation study of neutron radiation damage to cadmium zinc telluride

Wei Wen-Jing, Gao Xu-Dong, Lü Liang-Liang, Xu Nan-Nan, Li Gong-Ping
PDF
HTML
导出引用
  • 碲锌镉探测器长期暴露于辐射环境下时, 会形成不同程度的辐照损伤, 影响器件性能甚至失效, 极大缩短探测器在辐射场中的服役时限. 本文首先利用Geant4程序包对能量为1.00—14.00 MeV的中子在碲锌镉中的输运过程进行模拟, 获取初级离位原子的信息, 进而结合级联碰撞模型, 对不同能量的中子在碲锌镉材料中造成的辐照损伤进行模拟计算. 计算结果表明初级离位原子能量大部分位于低能端, 并随着入射中子能量升高, 初级离位原子的种类更加丰富, 能量也逐渐增大; 中子辐照碲锌镉材料时非电离能损沿着深度方向均匀分布, 且非电离能损随着入射中子能量的增加呈现先增大后减小的趋势; 辐照损伤量—原子离位次数(dpa)的计算结果表明, dpa也随入射中子能量升高呈先增大后减小的趋势, 进一步分析可知随着入射中子能量增大, 非弹性散射成为造成材料内部离位损伤的主要因素.
    In recent years, the development of new semiconductor materials has made an opportunity and challenge for technological innovation and the development of emerging industries. Among them, cadmium zinc telluride materials have highlighted important application prospects due to their excellent properties. The CdZnTe, as the third-generation cutting-edge strategic semiconductor material, has the advantages of high detection efficiency, low dark current, strong portability, and applicability at room temperature without additional cooling system. However, when the cadmium zinc telluride detector is exposed to radiation environment for a long time, it will cause different degrees of radiation damage, which will affect the performance of the device or even fail to work, and greatly shorten the service time of the detector in the radiation field. The transport process of 1.00–14.00 MeV neutrons in CdZnTe material is simulated to obtain the information about the primary knock-on atoms, and then by combining with the cascade collision model, the irradiation of neutrons with different energy in CdZnTe material is analyzed. The damage is simulated and calculated. The calculation results are shown below. The energy of most of the primary knock-on atoms is located at the low-energy end, and with the increase of the incident neutron energy, the types of primary knock-on atoms are more abundant, and the energy also increases gradually. With neutron irradiation of CdZnTe, the non-ionizing energy loss is uniformly distributed along the depth direction in the material, and the non-ionizing energy loss first increases and then decreases with the increase of the incident neutron energy. The calculation results of displacements per atom(dpa) show that the dpa also increases first with the increase of the incident neutron energy. And further analysis shows that the number of Te displacement atom atoms and the number of the Zn displacement atoms both increase first and decrease then with the increase of incident neutron energy, while the number of Cd displacement atoms increases with the increase of incident neutron energy, which is co-modulated by its inelastic scattering cross-section and other nuclear-like reaction cross-sections. The comprehensive analysis shows that with the increase of the incident neutron energy, inelastic scattering becomes the main factor causing the internal displacement damage of the material.
      通信作者: 李公平, ligp@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11975006, 11575074)和兰州大学特殊功能材料与结构设计教育部重点实验室(B类)2021年开放课题(批准号: lzujbky-2021-kb06)资助的课题.
      Corresponding author: Li Gong-Ping, ligp@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975006, 11575074), and the Open Project of Key Laboratory of Special Functional Materials and Structural Design of the Ministry of Education (Class B) of Lanzhou University in 2021 (Grant No. lzujbky-2021-kb06).
    [1]

    Alam M D, Nasim S S, Hasan S 2021 Prog. Nucl. Energy 140 103918Google Scholar

    [2]

    Takahashi T, Watanabe S 2001 IEEE Trans. Nucl. Sci. 48 950Google Scholar

    [3]

    Rao C V S, Shankara Joisa Y, Hansalia C J, Hui A K, Paul R, Ranjan P 1997 Rev. Sci. Instrum. 68 1142Google Scholar

    [4]

    Alper B, Dillon S, Edwards A W, Gill R D, Robins R, Wilson D J 1997 Rev. Sci. Instrum. 68 778

    [5]

    Ingesson L C, Alper B, Peterson B J, Vallet J C 2008 Fusion Sci. Technol. 53 528Google Scholar

    [6]

    Yin Y, Li Y, Wang T, Huang C, Ye Z, Li G 2020 Sensors 20 E1294Google Scholar

    [7]

    Johns P M, Nino J C 2019 J. Appl. Phys. 126 040902Google Scholar

    [8]

    Gu Y, Jie W, Rong C, Wang Y, Xu L, Xu Y, Lv H, Shen H, Du G, Fu X, Guo N, Zha G, Wang T 2016 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 386 16Google Scholar

    [9]

    Xu L, Jie W, Zha G, Xu Y, Zhao X, Feng T, Luo L, Zhang W, Nan R, Wang T 2013 Cryst. Eng. Comm. 15 10304Google Scholar

    [10]

    Bao L, Zha G, Gu Y, Jie W 2021 Mater. Sci. Semicond. Process. 121 105369Google Scholar

    [11]

    Eisen Y, Shor A 2009 IEEE Trans. Nucl. Sci. 56 1700Google Scholar

    [12]

    Bao L, Zha G, Xu L, Zhang B, Dong J, Li Y, Jie W 2019 Mater. Sci. Semicond. Process. 100 179Google Scholar

    [13]

    Bartlett L M, Stahle C M, Shu P K, Barbier L M, Barthelmy S D, Gehrels N A, Krizmanic J F, Kurczynski P, Palmer D M, Parsons A M, Teegarden B J, Tueller J 1996 Hard X-RayGamma-Ray Neutron Opt. Sens. Appl. 1996-07-19 pp10–16

    [14]

    李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar

    Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar

    [15]

    陈金勇 2014 硕士学位论文 (西安: 西安电子科技大学)

    Chen J Y 2014 M. S. Thesis ( Xi'an: Xidian University) (in Chinese)

    [16]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [17]

    崔振国, 勾成俊, 侯氢, 毛莉, 周晓松 2013 物理学报 62 156105Google Scholar

    Cui Z G, Gou C J, Hou Q, Mao L, Zhou X S 2013 Acta Phys. Sin. 62 156105Google Scholar

    [18]

    Agostinelli S, Allison J, Amako K, et 2003 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 506 250Google Scholar

    [19]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [20]

    Allison J, Amako K, Apostolakis J, et al. 2016 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 835 186Google Scholar

    [21]

    Srour J R, Marshall C J, Marshall P W 2003 IEEE Trans. Nucl. Sci. 50 653Google Scholar

    [22]

    郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑 2020 物理学报 69 207301Google Scholar

    Hao R J, Guo H X, Pan X Y, Lv L, Lei Z F, Li B, Zhong X L, Ouyang X P, Dong S J 2020 Acta Phys. Sin. 69 207301Google Scholar

    [23]

    申帅帅, 贺朝会, 李永宏 2018 物理学报 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [24]

    Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M, Lifshitz Y 2001 Radiat. Phys. Chem. 62 301Google Scholar

    [25]

    Liu Y, Zhu T, Yao J, Ouyang X 2019 Sensors 19 1767Google Scholar

    [26]

    朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴 2014 物理学报 63 066102Google Scholar

    Zhu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014 Acta Phys. Sin. 63 066102Google Scholar

    [27]

    Robinson M, Torrens I 1974 Phys. Rev. B 9 5008Google Scholar

    [28]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 J. Nucl. Mater. 512 450Google Scholar

    [29]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 Nat. Commun. 9 1084Google Scholar

    [30]

    Bryant F J, Webster E 1967 Phys. Status Solidi B 21 315Google Scholar

    [31]

    Guo R, Xu Y, Wang T, Zha G, Jie W 2020 J. Appl. Phys. 127 024501Google Scholar

  • 图 1  中子在CdZnTe中的平均自由程

    Fig. 1.  The mean free path of neutron in CdZnTe.

    图 2  Geant4几何模型结构示意图

    Fig. 2.  Schematic diagram of Geant4 geometric model structure.

    图 3  中子反应截面 (a) Cd; (b) Te; (c) Zn

    Fig. 3.  Neutron reaction cross section: (a) Cd; (b) Te; (c) Zn.

    图 4  中子辐照不同种类PKA能谱图 (a) 2.45 MeV; (b) 14.00 MeV

    Fig. 4.  PKA spectra of different types of neutron irradiation: (a) 2.45 MeV; (b) 14.00 MeV.

    图 5  不同能量中子辐照CZT材料NIEL随深度变化

    Fig. 5.  NIEL of CZT material irradiated by neutrons of different energies varies with depth.

    图 6  不同反应类型NIEL随入射中子能量变化

    Fig. 6.  NIEL varies with incident neutron energy in different reaction types.

    图 7  不同反应类型造成离位原子数随能量变化 (a) Cd; (b) Te; (c) Zn; (d) Tot

    Fig. 7.  The number of dislocated atoms varies with energy due to different reaction types: (a) Cd; (b) Te; (c) Zn; (d) Tot.

    图 8  各类原子dpa随中子能量变化

    Fig. 8.  Dpa of various atoms varies with neutron energy.

    表 1  不同能量中子辐照CZT产生PKA信息汇总表

    Table 1.  Summary of PKA generated by neutron incident Cd, Te, Zn.

    Energy/
    MeV
    ElementRecoil atomsEkEdam(T)Percentage/%
    2.45Cd114Cd(12.57%) 112Cd(10.47%) 111Cd(5.57%) 113Cd(5.44%)
    110Cd(5.33%) 116Cd(3.31%) 106—109, 115, 117Cd(0.98%)
    0.002 eV—
    91.79 keV
    0.002 eV—
    76.80 keV
    43.67
    Te130Te(18.43%) 128Te(16.58%) 126Te(9.94%) 125Te(3.71%) 124Te(2.51%)
    122Te(1.32%) 120, 121, 123, 127, 129, 131Te(0.58%)
    0.03 eV—
    81.05 keV
    0.03 eV—
    69.68 keV
    53.05
    Zn64Zn(1.59%) 66Zn(0.93%) 68Zn(0.55%) 65, 67, 69—70Zn(0.15%)1.33 eV—
    150.18 keV
    1.29 eV—
    102.91 keV
    3.23
    Other1H 4He 61, 64Ni 64Cu etc.527.59 eV—
    5.62 MeV
    492.12 eV—
    239.7 keV
    0.05
    14.00Cd112Cd(11.47%) 114Cd(10.38%) 113Cd(9.46%) 111Cd(8.68%) 110Cd(7.08%)
    116Cd(2.66%) 109Cd(2.02%) 115Cd(1.47%) 105—108, 117Cd(1.12%)
    0.07 eV—
    548.26 keV
    0.07 eV—
    314.20 keV
    54.34
    Te130Te(13.88%) 128Te(13.17%) 126Te(7.87%) 125Te(2.85%) 124Te(2.02%)
    122Te(1.10%) 120—121, 123, 127, 129, 131Te(0.41%)
    0.05 eV—
    458.06 keV
    0.05 eV—
    279.67 keV
    41.29
    Zn64Zn(1.30%) 66Zn(0.87%) 68Zn(0.54%) 65, 67, 69—70Zn(0.13%)0.87 eV—
    861.92 keV
    0.85 eV—
    325.25 keV
    2.83
    H1H(0.71%) 2H(0.02%)2.17 keV—
    14.60 MeV
    313.33 eV—
    1.69 keV
    0.73
    Other4He (0.26%) 61, 63—65, 67Ni 63—68, 70Cu 120—128, 130Sb 102—111, 113Pd
    105—114, 116Ag 117, 119—123, 125, 127Sn etc.
    328.98 eV—
    19.94 MeV
    315.24 eV—
    0.66 MeV
    0.81
    下载: 导出CSV

    表 A1  中子入射CdZnTe产生的PKA详细信息汇总表

    Table A1.  Summary of PKA details generated by neutron incident CdZnTe.

    Energy/
    MeV
    ElementRecoil atomsEkEdam(T)Percen-
    tage
    1.00Cd114Cd (13.61%), 112Cd (11.30%), 111Cd (6.00%)
    113Cd(5.83%), 110Cd (5.80%), 116Cd (3.56%)
    106—109, 115, 117Cd (1.06%)
    0.03 eV—37.49 keV0.03 eV—32.95 keV47.16%
    Te130Te (16.79%), 128Te(15.86%), 126Te (9.30%) 125Te (3.51%),
    124Te (2.40%), 122Te (1.27%) 120, 121, 123, 127, 129, 131Te (0.57%)
    0.02 eV—33.17 keV0.02 eV—29.67 keV49.69%
    Zn64Zn (1.55%), 66Zn (0.87%), 68Zn (0.57%)
    65, 67, 69—71Zn (0.15%)
    0.10 eV—61.31 keV0.10 eV—47.55 keV3.14%
    Other4He, 61Ni, etc.0.12—3.84 MeV5.88—171.64 keV0.01%
    2.45Cd114Cd(12.57%), 112Cd(10.47%), 111Cd(5.57%) 113Cd(5.44%),
    110Cd(5.33%), 116Cd(3.31%) 106—109, 115, 117Cd(0.98%)
    0.002 eV—91.79 keV0.002 eV—76.80 keV43.67%
    Te130Te(18.43%), 128Te(16.58%), 126Te(9.94%) 125Te(3.71%),
    124Te(2.51%), 122Te(1.32%) 120, 121, 123, 127, 129, 131Te(0.58%)
    0.03 eV—81.05 keV0.03 eV—69.68 keV53.05%
    Zn64Zn(1.59%), 66Zn(0.93%), 68Zn(0.55%) 65, 67, 69—70Zn(0.15%)1.33 eV—150.18 keV1.29 eV—102.91 keV3.23%
    Other1H, 4He, 61, 64Ni, 64Cu, etc.527.59 eV—5.62 MeV492.12 eV—239.77 keV0.05%
    5.00Cd114Cd(12.56%), 112Cd(10.53%), 111Cd(5.60%) 110Cd(5.39%),
    113Cd(5.32%), 116Cd(3.33%) 106—109, 115, 117Cd(0.93%)
    0.04 eV—187.28 keV0.04 eV—147.18 keV43.66%
    Te130Te(17.82%), 128Te(16.26%), 126Te(9.67%) 125Te(3.61%),
    124Te(2.45%), 122Te(1.30%) 120, 121, 123, 127, 129, 131Te(0.54%)
    0.02 eV—163.22 keV0.02 eV—133.96 keV51.65%
    Zn64Zn(2.07%), 66Zn(1.26%), 68Zn(0.86%) 65, 67, 69—71Zn(0.21%)0.20 eV—306.43 keV0.20 eV—150.03 keV4.39%
    Other64, 66—67Cu, 103, 108Pd, 1H, 4He 61, 63—65 Ni, 106, 108Ag, etc.163.93 eV—10.68 MeV154.95 eV—368.6 keV0.30%
    10.00Cd114Cd(13.72%), 112Cd(13.72%), 110Cd(7.19%) 111Cd(5.30%),
    113Cd(4.80%), 116Cd(3.44%) 106—109, 115, 117Cd(1.32%)
    0.04 eV—387.48 keV0.04 eV—234.63 keV49.08%
    Te130Te(15.10%), 128Te(15.02%), 126Te(9.37%) 125Te(2.65%),
    124Te(2.50%), 122Te(1.37%) 120, 123, 127, 129, 131Te(0.42%)
    0.02 eV—327.02 keV0.02 eV—207.62 keV46.42%
    Zn64Zn(1.77%), 66Zn(1.15%), 68Zn(0.81%) 67, 69—70Zn(0.17%)0.21 eV—614.56 keV0.21 eV—256.14 keV3.90%
    Other1—2H(0.21%), 63—64, 66—68Cu(0.17%), 4He (0.10%) 61, 63—65 Ni,
    102—103, 105, 107—108, 110Pd 117, 119—123, 127Sn, 106, 108, 110—114Ag
    120, 122—126, 128, 130Sb, etc.
    1940.87 eV—15.72 MeV554.83 eV—547.11 keV0.60%
    14.00Cd112Cd(11.47%), 114Cd(10.38%), 113Cd(9.46%) 111Cd(8.68%),
    110Cd(7.08%), 116Cd(2.66%) 109Cd(2.02%), 115Cd(1.47%) ,
    105—108, 117Cd(1.12%)
    0.07 eV—548.26 keV0.07 eV—314.20 keV54.34%
    Te130Te(13.88%), 128Te(13.17%), 126Te(7.87%) 125Te(2.85%),
    124Te(2.02%), 122Te(1.10%) 120—121, 123, 127, 129, 131Te(0.41%)
    0.05 eV—458.06 keV0.05 eV—279.67 keV41.29%
    Zn64Zn(1.30%), 66Zn(0.87%), 68Zn(0.54%) 65, 67, 69—70Zn(0.13%)0.87 eV—861.92 keV0.85 eV—325.25 keV2.83%
    H1H(0.71%), 2H(0.02%)2.17 keV—14.60 MeV313.33 eV—1.69 keV0.73%
    Other4He (0.26%), 61, 63—65, 67 Ni, 63—68, 70Cu 120—128, 130Sb,
    102—111, 113Pd, 105—114, 116Ag 117, 119—123, 125, 127Sn, etc.
    328.98 eV—19.94 MeV315.24 eV—0.66 MeV0.81%
    下载: 导出CSV
  • [1]

    Alam M D, Nasim S S, Hasan S 2021 Prog. Nucl. Energy 140 103918Google Scholar

    [2]

    Takahashi T, Watanabe S 2001 IEEE Trans. Nucl. Sci. 48 950Google Scholar

    [3]

    Rao C V S, Shankara Joisa Y, Hansalia C J, Hui A K, Paul R, Ranjan P 1997 Rev. Sci. Instrum. 68 1142Google Scholar

    [4]

    Alper B, Dillon S, Edwards A W, Gill R D, Robins R, Wilson D J 1997 Rev. Sci. Instrum. 68 778

    [5]

    Ingesson L C, Alper B, Peterson B J, Vallet J C 2008 Fusion Sci. Technol. 53 528Google Scholar

    [6]

    Yin Y, Li Y, Wang T, Huang C, Ye Z, Li G 2020 Sensors 20 E1294Google Scholar

    [7]

    Johns P M, Nino J C 2019 J. Appl. Phys. 126 040902Google Scholar

    [8]

    Gu Y, Jie W, Rong C, Wang Y, Xu L, Xu Y, Lv H, Shen H, Du G, Fu X, Guo N, Zha G, Wang T 2016 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 386 16Google Scholar

    [9]

    Xu L, Jie W, Zha G, Xu Y, Zhao X, Feng T, Luo L, Zhang W, Nan R, Wang T 2013 Cryst. Eng. Comm. 15 10304Google Scholar

    [10]

    Bao L, Zha G, Gu Y, Jie W 2021 Mater. Sci. Semicond. Process. 121 105369Google Scholar

    [11]

    Eisen Y, Shor A 2009 IEEE Trans. Nucl. Sci. 56 1700Google Scholar

    [12]

    Bao L, Zha G, Xu L, Zhang B, Dong J, Li Y, Jie W 2019 Mater. Sci. Semicond. Process. 100 179Google Scholar

    [13]

    Bartlett L M, Stahle C M, Shu P K, Barbier L M, Barthelmy S D, Gehrels N A, Krizmanic J F, Kurczynski P, Palmer D M, Parsons A M, Teegarden B J, Tueller J 1996 Hard X-RayGamma-Ray Neutron Opt. Sens. Appl. 1996-07-19 pp10–16

    [14]

    李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar

    Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar

    [15]

    陈金勇 2014 硕士学位论文 (西安: 西安电子科技大学)

    Chen J Y 2014 M. S. Thesis ( Xi'an: Xidian University) (in Chinese)

    [16]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [17]

    崔振国, 勾成俊, 侯氢, 毛莉, 周晓松 2013 物理学报 62 156105Google Scholar

    Cui Z G, Gou C J, Hou Q, Mao L, Zhou X S 2013 Acta Phys. Sin. 62 156105Google Scholar

    [18]

    Agostinelli S, Allison J, Amako K, et 2003 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 506 250Google Scholar

    [19]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [20]

    Allison J, Amako K, Apostolakis J, et al. 2016 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 835 186Google Scholar

    [21]

    Srour J R, Marshall C J, Marshall P W 2003 IEEE Trans. Nucl. Sci. 50 653Google Scholar

    [22]

    郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑 2020 物理学报 69 207301Google Scholar

    Hao R J, Guo H X, Pan X Y, Lv L, Lei Z F, Li B, Zhong X L, Ouyang X P, Dong S J 2020 Acta Phys. Sin. 69 207301Google Scholar

    [23]

    申帅帅, 贺朝会, 李永宏 2018 物理学报 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [24]

    Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M, Lifshitz Y 2001 Radiat. Phys. Chem. 62 301Google Scholar

    [25]

    Liu Y, Zhu T, Yao J, Ouyang X 2019 Sensors 19 1767Google Scholar

    [26]

    朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴 2014 物理学报 63 066102Google Scholar

    Zhu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014 Acta Phys. Sin. 63 066102Google Scholar

    [27]

    Robinson M, Torrens I 1974 Phys. Rev. B 9 5008Google Scholar

    [28]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 J. Nucl. Mater. 512 450Google Scholar

    [29]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 Nat. Commun. 9 1084Google Scholar

    [30]

    Bryant F J, Webster E 1967 Phys. Status Solidi B 21 315Google Scholar

    [31]

    Guo R, Xu Y, Wang T, Zha G, Jie W 2020 J. Appl. Phys. 127 024501Google Scholar

  • [1] 赵珀, 王建强, 陈梅清, 杨金学, 苏钲雄, 卢晨阳, 刘华军, 洪智勇, 高瑞. EuBa2Cu3O7–δ超导带材中掺杂相对He+离子辐照缺陷演化及超导电性的影响. 物理学报, 2024, 73(8): 087401. doi: 10.7498/aps.73.20240124
    [2] 曹嵩, 殷雯, 周斌, 胡志良, 沈飞, 易天成, 王松林, 梁天骄. 中国散裂中子源二期靶站关键部件辐照损伤模拟计算. 物理学报, 2024, 73(9): 092501. doi: 10.7498/aps.73.20240088
    [3] 彭超, 雷志锋, 张战刚, 何玉娟, 马腾, 蔡宗棋, 陈义强. 中子辐射导致的SiC功率器件漏电增加特性研究. 物理学报, 2023, 72(18): 186102. doi: 10.7498/aps.72.20230976
    [4] 张国帅, 尹超, 王兆繁, 陈泽, 毛世峰, 叶民友. 中子辐照诱导钨再结晶的模拟研究. 物理学报, 2023, 72(16): 162801. doi: 10.7498/aps.72.20230531
    [5] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [6] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [7] 王铁山, 张多飞, 陈亮, 律鹏, 杜鑫, 袁伟, 杨迪. 辐照导致硼硅酸盐玻璃机械性能变化. 物理学报, 2017, 66(2): 026101. doi: 10.7498/aps.66.026101
    [8] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究. 物理学报, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [9] 常晓阳, 尧舜, 张奇灵, 张杨, 吴波, 占荣, 杨翠柏, 王智勇. 基于分布式布拉格反射器结构的空间三结砷化镓太阳能电池抗辐照研究. 物理学报, 2016, 65(10): 108801. doi: 10.7498/aps.65.108801
    [10] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬. 电子辐照下GaAs/Ge太阳电池载流子输运机理研究. 物理学报, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [11] 曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航. 质子与中子辐照对电荷耦合器件暗信号参数的影响及其效应分析. 物理学报, 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [12] 谷文萍, 张林, 李清华, 邱彦章, 郝跃, 全思, 刘盼枝. 中子辐照对AlGaN/GaN高电子迁移率晶体管器件电特性的影响. 物理学报, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [13] 姜少宁, 万发荣, 龙毅, 刘传歆, 詹倩, 大貫惣明. 氦、氘对纯铁辐照缺陷的影响. 物理学报, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [14] 崔振国, 勾成俊, 侯氢, 毛莉, 周晓松. 低能中子在锆中产生的辐照损伤的计算机模拟研究. 物理学报, 2013, 62(15): 156105. doi: 10.7498/aps.62.156105
    [15] 朱勇, 李宝华, 谢国锋. 质子对BaTiO3薄膜辐照损伤的计算机模拟. 物理学报, 2012, 61(4): 046103. doi: 10.7498/aps.61.046103
    [16] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [17] 吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波. 位移损伤剂量法评估空间GaAs/Ge太阳电池辐照损伤过程. 物理学报, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [18] 贺新福, 杨文, 樊胜. 论FeCr合金辐照损伤的多尺度模拟. 物理学报, 2009, 58(12): 8657-8669. doi: 10.7498/aps.58.8657
    [19] 范鲜红, 李 敏, 尼启良, 刘世界, 王晓光, 陈 波. Mo/Si多层膜在质子辐照下反射率的变化. 物理学报, 2008, 57(10): 6494-6499. doi: 10.7498/aps.57.6494
    [20] 李养贤, 刘何燕, 牛萍娟, 刘彩池, 徐岳生, 杨德仁, 阙端鳞. 中子辐照直拉硅中的本征吸除效应. 物理学报, 2002, 51(10): 2407-2410. doi: 10.7498/aps.51.2407
计量
  • 文章访问数:  5557
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 修回日期:  2022-07-22
  • 上网日期:  2022-11-24
  • 刊出日期:  2022-11-20

/

返回文章
返回