搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InP中子位移损伤效应的Geant4模拟

李薇 白雨蓉 郭昊轩 贺朝会 李永宏

引用本文:
Citation:

InP中子位移损伤效应的Geant4模拟

李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏

Geant4 simulation of neutron displacement damage effect in InP

Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong
PDF
HTML
导出引用
  • 磷化铟(InP)作为第二代化合物半导体材料, 抗辐照能力强, 光电转换效率高, 在光子领域和射频领域具有优势. 大气空间中, InP半导体器件受大气中子辐照影响, 器件性能发生退化. 本文采用蒙特卡罗模拟软件Geant4对InP中子辐照效应进行模拟, 得到InP中不同能量中子产生的位移损伤初态分布. 结果表明: 在微米量级内, 非电离能量损失(NIEL)随深度均匀分布, 在厘米及更高量级上, NIEL随着入射深度的增大而降低, 当靶材料足够厚时可以降低至零; 分析1—20 MeV中子入射3 μm InP产生的NIEL及其随深度分布, 发现NIEL随入射中子能量的增加呈现出先升后降的趋势, 该趋势主要由非弹性散射反应产生的初级反冲原子(PKA)造成; 分析1—20 MeV中子入射3 μm InP产生的PKA种类、能量, 发现In/P的PKA占比较大, 是产生位移损伤的主要因素, 中子能量越高, PKA的种类越丰富, PKA最大动能越大, 但PKA主要分布在低能部分. 研究结果对InP基5G器件在大气中子辐射环境中的长期应用具有理论和指导价值.
    As the second-generation compound semiconductor material, indium phosphide (InP) has strong irradiation resistance and high photoelectric conversion efficiency. It has advantages in the field of photonics and radio frequency. In atmospheric space, high-energy cosmic rays enter into the earth’s atmosphere and interact with nitrogen (N), oxygen (O) and other elements to produce secondary cosmic rays. The irradiation particles in the atmosphere are mainly neutrons because the penetration of charged particles is weak. The InP semiconductor devices are affected by atmospheric neutron irradiation of various energy from all directions, which results in the internal defects in InP crystals, the degradation of device performance and the reduction of device lifetime. In this paper, Monte Carlo simulation software Geant4 is used to simulate the neutron irradiation effect, and the initial state distribution of displacement damage caused by neutrons with different energy is obtained, including the distribution of non-ionized energy loss (NIEL) with depth, the relationship between NIEL and the energy of incident neutrons, and the type, number and energy of primary knock-on atoms (PKA). The results show that 1) the NIEL is uniformly distributed when material thickness is on the order of μm and for the material thickness on the order of cm and more, the NIEL decreases as the depth increases and can be reduced to zero when the target material is thick enough; 2) by analyzing the NIEL produced by 1–20 MeV neutrons incident on 3-μm InP and their distribution with depth, it is found that the NIEL first increases and then decreases with incident neutron energy increasing. This trend is caused mainly by PKA produced through the inelastic scattering reaction; 3) by analyzing the type and the energy of PKA produced by 1–20 MeV neutrons incident on 3 μm InP, it is found that the PKA of In/P accounts for a large proportion, which causes displacement damage mainly, and the higher the neutron energy, the richer the variety of PKA is and the greater the maximum kinetic energy of PKA, but the PKAs mainly distribute in the low energy part. The present research has theoretical and guiding value for the long-term application of InP-based 5G devices in atmospheric neutron irradiation environment.
      通信作者: 贺朝会, hechaohui@mail.xjtu.edu.cn
    • 基金项目: 基础加强计划(批准号: 2019-JCJQ-ZD-267)资助的课题
      Corresponding author: He Chao-Hui, hechaohui@mail.xjtu.edu.cn
    • Funds: Project supported by the Basic Strength Program of China (Grant No. 2019-JCJQ-ZD-267)
    [1]

    O'Neill P M 2010 IEEE Trans. Nucl. Sci. 57 3148

    [2]

    陈启明, 郭刚, 祁琳, 张付强 2018 科技创新导报 15 127Google Scholar

    Chen Q M, Guo G, Qi L, Zhang F Q 2018 Sci. Technol. Innov. Her. 15 127Google Scholar

    [3]

    Jay A, Raine M, Richard N, Mousseau N, Goiffon V, Hémeryck A, Magnan P 2017 IEEE Trans. Nucl. Sci. 64 141Google Scholar

    [4]

    Atmospheric Radiation Effects Whitepaper, Vranish K http://www.kva-engineering.com/pdf/SEU_whitepaper_FAA_Con.pdf [2021-9-8]

    [5]

    Inguimbert C, Gigante R 2006 IEEE Trans. Nucl. Sci. 53 1967Google Scholar

    [6]

    Messenger S R 1999 IEEE Trans. Nucl. Sci. 46 1595Google Scholar

    [7]

    Autran J, Munteanu D 2020 IEEE Trans. Nucl. Sci. 67 1428Google Scholar

    [8]

    Ruzin A, Casse G, Glaser M, Zanet A, Lemeilleur F, Watts S 1999 IEEE Trans. Nucl. Sci. 46 1310Google Scholar

    [9]

    Messenger S R, Burke E A, Lorentzen J, Walters R J, Warner J H, Summers G P, Murray S L, Murray C S, Crowley C J, Elkouh N A 2005 Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference FL, USA, Jan 3–7, 2005 p559

    [10]

    Tonigan A M, Arutt C N, Parma E J, Griffin P J, Fleetwood D M, Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 495Google Scholar

    [11]

    Jiang W, Yue C, Cui M Y, et al. 2020 Chin. Phys. Lett. 37 119601Google Scholar

    [12]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250Google Scholar

    [13]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [14]

    郭达禧, 贺朝会, 臧航, 席建琦, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222Google Scholar

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom. Energ. Sci. Technol. 47 1222Google Scholar

    [15]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 126

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 126

    [16]

    朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴 2014 物理学报 63 066102Google Scholar

    Zhu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014 Acta Phys. Sin. 63 066102Google Scholar

    [17]

    唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊胜, 黄小龙, 王传珊 2008 物理学报 57 1266Google Scholar

    Tang X X, Luo W H, Wang C Z, He F X, Zha Y Z, Fan S, Huang X L, Wang C S 2008 Acta Phys. Sin. 57 1266Google Scholar

    [18]

    吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 物理学报 60 098110Google Scholar

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110Google Scholar

    [19]

    张利英, 倪伟俊, 敬罕涛, 王相綦 2018 现代应用物理 9 10

    Zhang L Y, Ni W J, Jing H T, Wang X Q 2018 Mod. Appl. Phys. 9 10

    [20]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008Google Scholar

    [21]

    Akkerman A, Barak J 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 260 529Google Scholar

    [22]

    Shatalov A, Subramanian S, Klein A 2001 IEEE Trans. Nucl. Sci. 48 2262Google Scholar

    [23]

    Walters R J, Messenger S R, Cotal H L, Xapsos M A, Summers G P 1997 J. Appl. Phys. 82 2164Google Scholar

    [24]

    杨福家, 王炎森, 陆福全 1993 原子核物理 (上海: 复旦大学出版社) 第195页

    Yang F J, Wang Y S, Lu F Q 1993 Nuclear Physics (Shanghai: Fudan University Press) p195 (in Chinese)

  • 图 1  InP的中子弹性散射截面

    Fig. 1.  Neutron elastic scattering cross section of InP.

    图 2  Geant4模拟的InP结构图

    Fig. 2.  Structure of InP simulated by Geant4.

    图 3  各能量中子在3 μm薄靶内的NIEL深度分布

    Fig. 3.  NIEL depth distribution of neutrons at different energies in the 3 μm thin target.

    图 4  (a)各能量中子在3 cm厚靶内的NIEL深度分布; (b) 1 MeV中子在3 cm厚靶内的NIEL深度分布

    Fig. 4.  (a) NIEL depth distribution of neutrons at different energies in the 3 cm thick target; (b) NIEL depth distribution of 1 MeV neutrons in the 3 cm thick target.

    图 5  1 MeV中子在100 cm厚靶内的NIEL深度分布

    Fig. 5.  NIEL depth distribution of 1 MeV neutrons in the 100 cm thick target.

    图 6  NIEL与中子能量的关系 (a) 3 cm厚靶; (b) 3 μm薄靶

    Fig. 6.  The relationship between NIEL and neutron energy: (a) 3 cm thick target; (b) 3 μm thin target.

    图 7  1—20 MeV中子入射3 μm InP产生的不同种类PKA数目

    Fig. 7.  The number of different PKA produced by 1–20 MeV neutrons incident on 3 μm InP.

    图 8  1—20 MeV中子入射3 μm InP的PKA能谱

    Fig. 8.  The energy spectrum of PKA produced by 1–20 MeV neutrons incident on 3 μm InP.

    表 1  1—20 MeV中子入射3 μm的InP薄靶所得PKA的种类、数目与动能信息

    Table 1.  The type, number, and energy information of PKA obtained from 3 μm InP thin target irradiated by 1—20 MeV neutrons.

    入射中子能量/MeV反冲核(PKA)种类最小动能/eV最大动能/keV元素占比/%
    1.00113—116In1.1135.0170.51
    31—32P2.48122.3729.49
    2.54113—116In1.4189.0362.08
    31—32P14.74310.6936.57
    1H, 31Si1.57263.361.36
    5.00113, 115, 116In2.33173.0559.21
    31—32P6.10612.4137.57
    1H, 31Si, 4He, 28Al, 2.214283.903.22
    8.00113, 115In1.57281.8264.42
    31P17.12980.5428.80
    1H, 31Si, 4He, 28Al, 113, 115Cd1.007282.106.78
    10.00113, 115In1.29350.5366.42
    31P1.001225.7025.58
    1H, 31Si, 4He, 28Al, 115Cd, 112Ag1.009287.108.00
    12.00113, 115In1.11417.2163.21
    31P1.001473.4927.51
    1H, 31Si, 4He, 28Al, 113, 115Cd, 112Ag1.0014315.009.29
    14.00113, 115In1.04492.3460.26
    31P1.001705.7729.71
    1—2H, 31Si, 4He, 28Al, 112—115Cd, 110, 112Ag1.0016463.0010.03
    16.00113, 115In1.12556.4757.82
    31P1.001967.1531.98
    1—2H, 31Si, 4He, 28Al, 113—115Cd, 110, 112Ag1.0017593.0010.20
    18.00113, 115In1.45631.0754.70
    31P1.002215.8234.42
    1—3H, 31Si, 4He, 28Al, 111—115Cd, 110, 112Ag1.0021054.0010.88
    19.90113, 115In2.04703.4350.34
    31P1.002453.4337.58
    1—3H, 31Si, 4He, 28Al, 111—115Cd, 110, 112Ag1.0022391.0012.08
    下载: 导出CSV
  • [1]

    O'Neill P M 2010 IEEE Trans. Nucl. Sci. 57 3148

    [2]

    陈启明, 郭刚, 祁琳, 张付强 2018 科技创新导报 15 127Google Scholar

    Chen Q M, Guo G, Qi L, Zhang F Q 2018 Sci. Technol. Innov. Her. 15 127Google Scholar

    [3]

    Jay A, Raine M, Richard N, Mousseau N, Goiffon V, Hémeryck A, Magnan P 2017 IEEE Trans. Nucl. Sci. 64 141Google Scholar

    [4]

    Atmospheric Radiation Effects Whitepaper, Vranish K http://www.kva-engineering.com/pdf/SEU_whitepaper_FAA_Con.pdf [2021-9-8]

    [5]

    Inguimbert C, Gigante R 2006 IEEE Trans. Nucl. Sci. 53 1967Google Scholar

    [6]

    Messenger S R 1999 IEEE Trans. Nucl. Sci. 46 1595Google Scholar

    [7]

    Autran J, Munteanu D 2020 IEEE Trans. Nucl. Sci. 67 1428Google Scholar

    [8]

    Ruzin A, Casse G, Glaser M, Zanet A, Lemeilleur F, Watts S 1999 IEEE Trans. Nucl. Sci. 46 1310Google Scholar

    [9]

    Messenger S R, Burke E A, Lorentzen J, Walters R J, Warner J H, Summers G P, Murray S L, Murray C S, Crowley C J, Elkouh N A 2005 Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference FL, USA, Jan 3–7, 2005 p559

    [10]

    Tonigan A M, Arutt C N, Parma E J, Griffin P J, Fleetwood D M, Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 495Google Scholar

    [11]

    Jiang W, Yue C, Cui M Y, et al. 2020 Chin. Phys. Lett. 37 119601Google Scholar

    [12]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250Google Scholar

    [13]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [14]

    郭达禧, 贺朝会, 臧航, 席建琦, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222Google Scholar

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom. Energ. Sci. Technol. 47 1222Google Scholar

    [15]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 126

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 126

    [16]

    朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴 2014 物理学报 63 066102Google Scholar

    Zhu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014 Acta Phys. Sin. 63 066102Google Scholar

    [17]

    唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊胜, 黄小龙, 王传珊 2008 物理学报 57 1266Google Scholar

    Tang X X, Luo W H, Wang C Z, He F X, Zha Y Z, Fan S, Huang X L, Wang C S 2008 Acta Phys. Sin. 57 1266Google Scholar

    [18]

    吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 物理学报 60 098110Google Scholar

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110Google Scholar

    [19]

    张利英, 倪伟俊, 敬罕涛, 王相綦 2018 现代应用物理 9 10

    Zhang L Y, Ni W J, Jing H T, Wang X Q 2018 Mod. Appl. Phys. 9 10

    [20]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008Google Scholar

    [21]

    Akkerman A, Barak J 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 260 529Google Scholar

    [22]

    Shatalov A, Subramanian S, Klein A 2001 IEEE Trans. Nucl. Sci. 48 2262Google Scholar

    [23]

    Walters R J, Messenger S R, Cotal H L, Xapsos M A, Summers G P 1997 J. Appl. Phys. 82 2164Google Scholar

    [24]

    杨福家, 王炎森, 陆福全 1993 原子核物理 (上海: 复旦大学出版社) 第195页

    Yang F J, Wang Y S, Lu F Q 1993 Nuclear Physics (Shanghai: Fudan University Press) p195 (in Chinese)

  • [1] 肖石良, 王朝辉, 吴鸿毅, 陈雄军, 孙琪, 谭博宇, 王昊, 齐福刚. 中子诱发伽马产生截面测量中的谱分析技术. 物理学报, 2024, 73(7): 072901. doi: 10.7498/aps.73.20231980
    [2] 何欢, 白雨蓉, 田赏, 刘方, 臧航, 柳文波, 李培, 贺朝会. 质子入射AlxGa1–xN 材料的位移损伤模拟. 物理学报, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [3] 白雨蓉, 李培, 何欢, 刘方, 李薇, 贺朝会. 近地轨道质子和α粒子入射InP产生的位移损伤模拟. 物理学报, 2024, 73(5): 052401. doi: 10.7498/aps.73.20231499
    [4] 张战刚, 杨少华, 林倩, 雷志锋, 彭超, 何玉娟. 基于青藏高原的14 nm FinFET和28 nm平面CMOS工艺SRAM单粒子效应实时测量试验. 物理学报, 2023, 72(14): 146101. doi: 10.7498/aps.72.20230161
    [5] 彭超, 雷志锋, 张战刚, 何玉娟, 马腾, 蔡宗棋, 陈义强. 中子辐射导致的SiC功率器件漏电增加特性研究. 物理学报, 2023, 72(18): 186102. doi: 10.7498/aps.72.20230976
    [6] 白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会. 空间重离子入射磷化铟的位移损伤模拟. 物理学报, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [7] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [8] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [9] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [10] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [11] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康. 硅单粒子位移损伤多尺度模拟研究. 物理学报, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [12] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析. 物理学报, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [13] 车驰, 柳青峰, 马晶, 周彦平. 位移效应对量子点激光器的性能影响. 物理学报, 2013, 62(9): 094219. doi: 10.7498/aps.62.094219
    [14] 马晶, 车驰, 韩琦琦, 周彦平, 谭立英. 位移辐射效应对量子阱激光器性能的影响. 物理学报, 2012, 61(21): 214211. doi: 10.7498/aps.61.214211
    [15] 钟国强, 胡立群, 王相綦, 李晓玲, 林士耀, 许平, 段艳敏, 毛松涛, 张继忠. HT-7上射频波加热时中子辐射行为的研究. 物理学报, 2011, 60(1): 012901. doi: 10.7498/aps.60.012901
    [16] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷. 物理学报, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [17] 杨 俊, 赵有文, 董志远, 邓爱红, 苗杉杉, 王 博. 深能级缺陷对半绝缘InP材料电学补偿的影响. 物理学报, 2007, 56(2): 1167-1171. doi: 10.7498/aps.56.1167
    [18] 李 潇, 刘 亮, 张海英, 尹军舰, 李海鸥, 叶甜春, 龚 敏. 一种新的磷化铟复合沟道高电子迁移率晶体管小信号物理模型. 物理学报, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
    [19] 贺朝会, 耿 斌, 杨海亮, 陈晓华, 李国政, 王燕萍. 浮栅ROM器件辐射效应机理分析. 物理学报, 2003, 52(9): 2235-2238. doi: 10.7498/aps.52.2235
    [20] 丁瑞钦, 王浩, W.F.LAU, W.Y.CHEUNG, S.P.WONG, 王宁娟, 于英敏. InP/SiO2纳米复合膜的微观结构和光学性质. 物理学报, 2001, 50(8): 1574-1579. doi: 10.7498/aps.50.1574
计量
  • 文章访问数:  3855
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 修回日期:  2021-12-07
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回