搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速类HTV2模型全目标电磁散射特性实验研究

马平 韩一平 张宁 田得阳 石安华 宋强

引用本文:
Citation:

高超声速类HTV2模型全目标电磁散射特性实验研究

马平, 韩一平, 张宁, 田得阳, 石安华, 宋强

Experimental investigation on all-target electromagnetic scattering characteristics of hypervelocity HTV2-like flight model

Ma Ping, Han Yi-Ping, Zhang Ning, Tian De-Yang, Shi An-Hua, Song Qiang
PDF
HTML
导出引用
  • 针对临近空间高超声速飞行器目标探测与识别研究的需求, 开展了高超声速飞行器非均匀等离子体电磁散射特性模拟测量研究. 利用弹道靶设备发射高超声速类HTV2模型形成模拟的超高速复杂外形目标, 弹道靶高精度阴影成像系统和雷达测量系统分别测量高超声速类HTV2模型姿态、全目标C波段/X波段电磁散射特性, 获得了不同实验条件下模型全目标雷达散射截面积(RCS)等实验数据. 研究结果表明: 在不同实验状态下, 包覆等离子体鞘套的高超声速类HTV2模型同一测量波段的RCS差别超过1个数量级, 模型姿态角对包覆等离子体鞘套的高超声速类HTV2模型RCS影响较大, 最大相差1个多数量级; 在给定的实验条件下, 模型尾迹C波段RCS远小于包覆等离子体鞘套的模型RCS, 模型尾迹X波段RCS显著增强; 高超声速类HTV2模型全目标C波段电磁散射能量主要分布在模型及其绕流区域, X波段电磁散射能量主要分布在模型及其绕流区域和等离子体尾迹区域. 根据弹道靶实验条件, 开展了包覆等离子体鞘套的高超声速类HTV2模型电磁散射特性数值仿真, 仿真结果与实验结果之间的最大误差小于4 dB, 验证了本文提出的非均匀等离子体包覆目标电磁散射特性建模方法的有效性.
    According to the requirements for target detection and recognition of hypervelocity vehicles in near space, the simulation and measurement of corresponding electromagnetic scattering characteristics of non-uniform plasma generated by hypervelocity targets are conducted. A numerical calculation method with dynamic plasma parameters is developed and hypervelocity HTV2-like models launched by the ballistic ranges are used to simulate complex shape target flying at a hypervelocity velocity. The high-precision shadow imaging systems and radar measurement systems of the ballistic range are used to measure the model postures, the electromagnetic scattering characteristics of the whole targets and their flow fields in both C band and X band. The experimental measurement results of the radar cross section (RCS) of the models and their flow fields under different experimental conditions are obtained. The results show that the numerical simulation methods of unsteady high-temperature ionized air flow can be used to simulate the unsteady thermal chemical flow fields around the head and body of the simplified hypervelocity HTV2-like flight models. The electromagnetic scattering characteristics of the models and their plasma sheath differ by more than one order of magnitude under different experimental conditions. The total RCS of the model’s wake in the C band is much smaller than that of the model, and the total RCS of the model’s wake in the X band is significantly enhanced. The attitude angles of the models have great influence on their electromagnetic scattering characteristics and their RCSs with different attitude angles can differ by one order of magnitude. The electromagnetic scattering energy of the model in the C band is distributed mainly around the targets and their flow fields surrounding them. The X band electromagnetic scattering energy of the model is distributed mainly in the regions around the targets, surrounding flow fields and the wake flow fields. According to the experimental conditions of the ballistic range, the numerical simulation analyses of the electromagnetic scattering characteristics of the models and flow fields around them are carried out, and the maximum error between simulation and experimental results is less than 4 dB, verifying the effectiveness of the modeling methods of simulating electromagnetic scattering characteristics of non-uniform plasma coated targets.
      通信作者: 马平, hbmaping@263.net
    • 基金项目: 国家重点基础研究发展计划(批准号: 2019YFA0405200)和国防预研基金(批准号: 6140416010102)资助的课题
      Corresponding author: Ma Ping, hbmaping@263.net
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2019YFA0405200) and the National Defense Pre-Research Foundation of China (Grant No. 6140416010102)
    [1]

    Akey N D, Cross A E 1970 NASA-TN-D-5615 [1970-02-01]

    [2]

    Dirsa E F 1960 Pro. IRE 48 703Google Scholar

    [3]

    Golden K E, Pridmore D C, Stewart G E 1970 NASA 19710011626 (Washington: NASA LANGLEY Research Center)

    [4]

    Wood G E, Asmar S W, Rebold T A 1997 TDA Progress Report 42 131

    [5]

    Bachynski M P, Gibbs B W 1970 NASA 19710011649 (Washington: NASA LANGLEY Research Center)

    [6]

    Sotnikov V L, Leboeuf J N, Mudaliar S 2010 IEEE Trans. Plasma Sci. 38 2208Google Scholar

    [7]

    Usui H, Yamashita F, Matsumoto H 1999 Adv. Space Res. 24 1069Google Scholar

    [8]

    Mather D E, Pasqual J M, Sillence J P, Lewis P 2005 AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technology Capua, Italy, May 16–20, 2005 p3443

    [9]

    周超, 张小宽, 张晨新, 吴国成 2014 现代雷达 36 83Google Scholar

    Zhou C, Zhang X K, Zhang C X, Wu G C 2014 Modern Radar 36 83Google Scholar

    [10]

    吴巍, 刘方, 钟建林, 王国宏 2019 电波科学学报 34 610

    Wu W, Liu F, Zhong J L, Wang G H 2019 Chin. J. Radio. Sci. 34 610

    [11]

    金铭, 韦笑, 吴洋, 张羽淮, 余西龙 2015 物理学报 64 205205Google Scholar

    Jin M, Wei X, Wu Y, Zhang Y H, Yu X L 2015 Acta Phys. Sin. 64 205205Google Scholar

    [12]

    马平, 石安华, 杨益兼, 于哲峰, 黄洁 2015 强激光与粒子束 27 073201Google Scholar

    Ma P, Shi A H, Yang Y J, Yu Z F, Huang J 2015 High Power Laser Part. Beams 27 073201Google Scholar

    [13]

    马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁 2017 物理学报 66 102401Google Scholar

    Ma P, Shi A H, Yang Y J, Yu Z F, Liang S C, Huang J 2017 Acta Phys. Sin. 66 102401Google Scholar

    [14]

    邾继贵, 于之靖 2012 视觉测量原理与方法 (北京: 机械工业出版社) 第4678页

    Zhu J G, Yu Z J 2012 Principles and Methods of Visual Measurements (Beijing: China Machine Press) pp46–78 (in Chinese)

    [15]

    Sun H Y, Cui Z W, Wang J J, Han Y P, Shi P 2018 Phys. Plasmas 25 063514Google Scholar

    [16]

    Sun H Y, Wang J J, Han Y P, Cui Z W, Sun P, Shi X W, Zhao W J 2018 Int. J. Antennas Propag. 1 14

    [17]

    孙浩宇 2018 博士学位论文 (西安: 西安电子科技大学)

    Sun H Y 2018 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [18]

    艾夏 2013 博士学位论文 (西安: 西安电子科技大学)

    Ai X 2013 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [19]

    陈安涛 2019 博士学位论文 (西安: 西安电子科技大学)

    Chen A T 2019 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [20]

    葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (西安: 西安电子科技大学出版社) 第88—89页

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Xi’an: Xidian University Press) pp88–89 (in Chinese)

    [21]

    Ai X, Han Y, Li C Y, Shi X W 2011 Prog. Electromagn. Res. Lett. 22 83Google Scholar

    [22]

    Ai X, Han Y, Chen Z, Shi X W 2011 Prog. Electromagn. Res. M. 18 143Google Scholar

    [23]

    Ai X, Tian Y, Han Y P, Shi X W, Li W T 2013 J. Quant. Spectrosc. Radiat Transfer 124 28Google Scholar

    [24]

    陈伟, 郭立新, 李江挺, 淡荔 2017 物理学报 66 084102Google Scholar

    Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102Google Scholar

  • 图 1  弹道靶高超声速类HTV2模型RCS测量实验方案

    Fig. 1.  Experiment setup of electromagnetic scattering characteristics measurement for the simplified hypervelocity HTV2 flight model in the ballistic range.

    图 2  弹道靶高超声速类HTV2模型及弹托

    Fig. 2.  Simplified model of the hypervelocity HTV2 and its bracket in the ballistic range.

    图 3  模型与基准线相对位置关系

    Fig. 3.  Position of the model relative to the base line.

    图 4  雷达测量系统在弹道靶微波暗室中的布置示意图

    Fig. 4.  Layout of the radar system in microwave anechoic chamber of the ballistic range.

    图 5  图像坐标系

    Fig. 5.  Image of coordinate system.

    图 6  数字相机坐标系

    Fig. 6.  Coordinate system of digital camera.

    图 7  高超声速类HTV2模型高精度阴影照片(11.2 kPa, 5.0 km/s) (a) 水平; (b) 垂直

    Fig. 7.  High precision shadow photos of the simplified hypervelocity HTV2 models (11.2 kPa, 5.0 km/s): (a) Horizontal photograph; (b) vertical photograph.

    图 8  高超声速类HTV2模型C波段全目标RCS分布测量结果

    Fig. 8.  Distributive measurement results of the C band full target RCS of the simplified HTV2 models flying at hypervelocity.

    图 9  高超声速类HTV2模型X波段全目标RCS分布测量结果

    Fig. 9.  Distributive measurement results of the X band full target RCS of the simplified HTV2 models flying at hypervelocity.

    图 10  FDTD计算中的角度定义

    Fig. 10.  Image of angle definition in FDTD calculation.

    图 11  高超声速类HTV2弹道靶模型及其等离子体鞘套X波段的RCS数值计算结果, 虚线为类HTV2本体RCS

    Fig. 11.  Comparisons between numerical simulations and experiment results of the X band RCS of the simplified HTV2 models flying at hypervelocity and its plasma sheaths. The dashed line is the RCS of the simplified HTV2 models.

    图 12  高超声速类HTV2弹道靶模型及其等离子体鞘套C波段的RCS数值计算结果

    Fig. 12.  Comparisons between numerical simulations and experiment results of the C band RCS of the simplified HTV2 models flying at hypervelocity and its plasma sheaths. The dashed line is the RCS of the simplified HTV2 models.

    表 1  弹道靶高超声速球模型全目标RCS实验测量结果与数值计算结果对比

    Table 1.  Comparison between measurement and numerical results of the RCS of the ball models flying at hypervelocity.

    实验状态 球模型及其等离子体鞘套套RCS/dBsm 尾迹RCS/dBsm
    压力/kPa速度/(km·s–1)测量实验值计算结果实验测量值计算结果
    4.25.0 –31.40–31.31 –52.10–50.63
    下载: 导出CSV

    表 2  高超声速类HTV2模型C波段全目标RCS实验测量结果

    Table 2.  Measurement results of the C band full target RCS of the simplified HTV2 models flying at hypervelocity.

    实验状态模型姿态高超声速类HTV2模型全目标RCS实测结果/dBsm
    速度/(km·s–1)压力/kPa俯仰角
    /(°)
    偏航角
    /(°)
    滚转角
    /(°)
    模型全目标
    总RCS
    本体及绕流场RCS尾迹RCS
    5.07.622.435.18103.655.915.90–18.83
    5.08.8–1.8514.79–107.27–4.19–4.27–21.57
    5.010.4–7.15–2.1069.40–2.61–2.72–18.75
    5.015.36.02–10.1–109.071.901.87–19.79
    下载: 导出CSV

    表 3  高超声速类HTV2模型X波段全目标RCS实验测量结果

    Table 3.  Measurement results of the X band full target RCS of the simplified HTV2 models flying at hypervelocity.

    实验状态模型姿态高超声速类HTV2模型全目标RCS
    实测结果/dBsm
    速度
    /(km·s–1)
    压力
    /kPa
    俯仰角/(°)偏航角
    /(°)
    滚转角
    /(°)
    模型全目标
    总RCS
    本体及绕流场RCS尾迹RCS
    4.08.5–17.0023.006.80–8.75–8.76–35.56
    5.06.67.50–11.00108.281.051.05–30.70
    5.08.218.9317.11109.95–2.92–3.44–12.43
    5.011.64.03–3.25107.73–3.63–3.94–15.23
    5.014.8–7.009.1070.93–5.99–9.36–8.68
    下载: 导出CSV

    表 4  高超声速类HTV2模型不同波段RCS的FDTD方法数值模拟结果与弹道靶实验测量结果的对比

    Table 4.  Various bands RCS comparisons between FDTD simulations and experiment results of the simplified HTV2 models flying at hypervelocity.

    测量波段实验状态姿态角/(°)模型及等离子体鞘套总RCS
    压力
    /kPa
    速度/(km·s–1)俯仰角偏航角滚转角测量/dBsm计算/dBsm误差/dB
    X8.25.018.9317.11109.95–3.30–1.511.79
    C10.45.0–7.15–2.1069.40.733.142.41
    X11.65.04.03–3.25107.73–3.94–5.201.26
    X14.85.0–7.009.1070.93–9.26–6.013.35
    下载: 导出CSV
  • [1]

    Akey N D, Cross A E 1970 NASA-TN-D-5615 [1970-02-01]

    [2]

    Dirsa E F 1960 Pro. IRE 48 703Google Scholar

    [3]

    Golden K E, Pridmore D C, Stewart G E 1970 NASA 19710011626 (Washington: NASA LANGLEY Research Center)

    [4]

    Wood G E, Asmar S W, Rebold T A 1997 TDA Progress Report 42 131

    [5]

    Bachynski M P, Gibbs B W 1970 NASA 19710011649 (Washington: NASA LANGLEY Research Center)

    [6]

    Sotnikov V L, Leboeuf J N, Mudaliar S 2010 IEEE Trans. Plasma Sci. 38 2208Google Scholar

    [7]

    Usui H, Yamashita F, Matsumoto H 1999 Adv. Space Res. 24 1069Google Scholar

    [8]

    Mather D E, Pasqual J M, Sillence J P, Lewis P 2005 AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technology Capua, Italy, May 16–20, 2005 p3443

    [9]

    周超, 张小宽, 张晨新, 吴国成 2014 现代雷达 36 83Google Scholar

    Zhou C, Zhang X K, Zhang C X, Wu G C 2014 Modern Radar 36 83Google Scholar

    [10]

    吴巍, 刘方, 钟建林, 王国宏 2019 电波科学学报 34 610

    Wu W, Liu F, Zhong J L, Wang G H 2019 Chin. J. Radio. Sci. 34 610

    [11]

    金铭, 韦笑, 吴洋, 张羽淮, 余西龙 2015 物理学报 64 205205Google Scholar

    Jin M, Wei X, Wu Y, Zhang Y H, Yu X L 2015 Acta Phys. Sin. 64 205205Google Scholar

    [12]

    马平, 石安华, 杨益兼, 于哲峰, 黄洁 2015 强激光与粒子束 27 073201Google Scholar

    Ma P, Shi A H, Yang Y J, Yu Z F, Huang J 2015 High Power Laser Part. Beams 27 073201Google Scholar

    [13]

    马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁 2017 物理学报 66 102401Google Scholar

    Ma P, Shi A H, Yang Y J, Yu Z F, Liang S C, Huang J 2017 Acta Phys. Sin. 66 102401Google Scholar

    [14]

    邾继贵, 于之靖 2012 视觉测量原理与方法 (北京: 机械工业出版社) 第4678页

    Zhu J G, Yu Z J 2012 Principles and Methods of Visual Measurements (Beijing: China Machine Press) pp46–78 (in Chinese)

    [15]

    Sun H Y, Cui Z W, Wang J J, Han Y P, Shi P 2018 Phys. Plasmas 25 063514Google Scholar

    [16]

    Sun H Y, Wang J J, Han Y P, Cui Z W, Sun P, Shi X W, Zhao W J 2018 Int. J. Antennas Propag. 1 14

    [17]

    孙浩宇 2018 博士学位论文 (西安: 西安电子科技大学)

    Sun H Y 2018 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [18]

    艾夏 2013 博士学位论文 (西安: 西安电子科技大学)

    Ai X 2013 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [19]

    陈安涛 2019 博士学位论文 (西安: 西安电子科技大学)

    Chen A T 2019 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [20]

    葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (西安: 西安电子科技大学出版社) 第88—89页

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Xi’an: Xidian University Press) pp88–89 (in Chinese)

    [21]

    Ai X, Han Y, Li C Y, Shi X W 2011 Prog. Electromagn. Res. Lett. 22 83Google Scholar

    [22]

    Ai X, Han Y, Chen Z, Shi X W 2011 Prog. Electromagn. Res. M. 18 143Google Scholar

    [23]

    Ai X, Tian Y, Han Y P, Shi X W, Li W T 2013 J. Quant. Spectrosc. Radiat Transfer 124 28Google Scholar

    [24]

    陈伟, 郭立新, 李江挺, 淡荔 2017 物理学报 66 084102Google Scholar

    Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102Google Scholar

  • [1] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化. 物理学报, 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [2] 徐子原, 周辉, 刘光翰, 高中亮, 丁丽, 雷凡. 三维行波磁场对等离子体鞘套密度的调控作用. 物理学报, 2024, 73(17): 175201. doi: 10.7498/aps.73.20240877
    [3] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度. 物理学报, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [4] 刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵. 横向矩形微槽抑制高超声速第二模态扰动波的参数化研究. 物理学报, 2022, 71(19): 194701. doi: 10.7498/aps.71.20220851
    [5] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型. 物理学报, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [6] 谢天赐, 张彬, 贺泊, 李昊鹏, 秦壮, 钱金钱, 石锲铭, LewisElfed, 孙伟民. 放疗绝对剂量的数学算法模型. 物理学报, 2021, 70(1): 018701. doi: 10.7498/aps.70.20200986
    [7] 郑文鹏, 易仕和, 牛海波, 霍俊杰. 高超声速4∶1椭圆锥横流不稳定性实验研究. 物理学报, 2021, 70(24): 244702. doi: 10.7498/aps.70.20210807
    [8] 李瑶, 苏桐, 雷凡, 徐能, 盛立志, 赵宝升. 等离子体中X射线透过率分析及潜在通信应用研究. 物理学报, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [9] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性. 物理学报, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [10] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究. 物理学报, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [11] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究. 物理学报, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [12] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [13] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究. 物理学报, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [14] 姜志宏, 王晖, 高超. 一种基于随机行走和策略连接的网络演化模型. 物理学报, 2011, 60(5): 058903. doi: 10.7498/aps.60.058903
    [15] 吴华英, 张鹤鸣, 宋建军, 胡辉勇. 单轴应变硅nMOSFET栅隧穿电流模型. 物理学报, 2011, 60(9): 097302. doi: 10.7498/aps.60.097302
    [16] 李 琦, 张 波, 李肇基. 漂移区表面阶梯掺杂LDMOS的击穿电压模型. 物理学报, 2008, 57(3): 1891-1896. doi: 10.7498/aps.57.1891
    [17] 张鹤鸣, 崔晓英, 胡辉勇, 戴显英, 宣荣喜. 应变SiGe SOI量子阱沟道PMOSFET阈值电压模型研究. 物理学报, 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
    [18] 郝 跃, 韩新伟, 张进城, 张金凤. AlGaN/GaN HEMT器件直流扫描电流崩塌机理及其物理模型. 物理学报, 2006, 55(7): 3622-3628. doi: 10.7498/aps.55.3622
    [19] 马仲发, 庄奕琪, 杜 磊, 包军林, 李伟华. 栅氧化层介质经时击穿的逾渗模型. 物理学报, 2003, 52(8): 2046-2051. doi: 10.7498/aps.52.2046
    [20] 刘红侠, 方建平, 郝跃. 薄栅氧化层经时击穿的实验分析及物理模型研究. 物理学报, 2001, 50(6): 1172-1177. doi: 10.7498/aps.50.1172
计量
  • 文章访问数:  5221
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-13
  • 修回日期:  2021-12-05
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回