-
大面阵、高分辨率碲镉汞红外焦平面阵列图像传感器可用于航天遥感、高精度卫星成像等领域, 我国下一代气象卫星将全部应用此类图像传感器. 然而, 空间高能质子会对碲镉汞红外焦平面阵列探测器造成位移损伤效应, 同时亦会在其像素单元金属氧化物半导体(MOS)管引入电离总剂量效应. 本文以近年来广泛应用于图像传感器的55 nm制造工艺碲镉汞红外焦平面阵列图像传感器为对象, 基于超大面阵设计时所用的2 pixel×2 pixel基本像素单元, 构建了Geant4仿真模型, 并且进行了不同质子入射注量下的仿真研究, 获得了不同注量下的位移损伤情况, 包括非电离能量损失、离位原子数等. 结果表明, 空间高能质子累积注量为1013 cm–2时, 除了考虑碲镉汞红外焦平面阵列图像传感器位移损伤效应外, 亦需关注其像素单元MOS管电离总剂量效应. 与此同时, 结合仿真结果对其空间应用环境中的损伤情况进行了初步评估. 该研究可为未来超大面阵碲镉汞红外焦平面阵列图像传感器空间应用提供关键数据支撑.A large-format, high-resolution Hg1–xCdxTe infrared focal plane array (IRFPA) image sensor can be used in aerospace remote sensing and high-precision satellite imaging. The next generation of meteorological satellites in China will all adopt this type of image sensor. However, space high-energy protons can cause displacement damage effects in Hg1–xCdxTe IRFPA detectors and induce total ionizing dose (TID) effects in the pixel unit metal-oxide-semiconductor (MOS) transistors. This study focuses on a 55nm manufacturing process Hg1–xCdxTe IRFPA sensor widely used in image sensors by using a 2 pixel×2 pixel basic pixel unit model for large-format arrays and constructing a Geant4 simulation model. Simulations are conducted for different proton irradiation fluences, including 1010, 1011, 1012 and 1013 cm–2. The results show the displacement damage under various fluences, including non-ionizing energy loss and displacement atom distribution. It is found that at a proton cumulative fluence of 1013 cm–2, in addition to considering the displacement damage effect in the Hg1–xCdxTe IRFPA sensor, attention must also be paid to the TID effects on the MOS transistors in the pixel units. Additionally, this study provides a preliminary assessment of the damage conditions in the space environment based on simulation results. This study provides crucial data for supporting the space applications of future large-format Hg1–xCdxTe IRFPA image sensors.
-
Keywords:
- Hg1–xCdxTe /
- infrared focal plane /
- proton /
- Geant4 /
- displacement damage /
- total ionizing dose
-
表 1 不同模拟注量下的PKA种类数目
Table 1. The PKA of different fluences in simulation.
仿真情况 入射质子注量/cm–2 PKA种类数目 A 1010 27 B 1011 36 C 1012 61 D 1013 159 表 2 模拟注量为1013cm–2的质子入射碲镉汞焦平面阵列产生的PKA
Table 2. The PKA detail under the proton fluences of 1013 cm–2 in simulation.
元素 反冲核及占比 比重 Te 占比>1% Te130(16.44%), Te128(15.70%), Te126(9.56%), Te125(3.63%), Te124(2.47%), Te122(1.36%) 49.71% 占比<1% Te123, Te120, Te127, Te121, Te129, Te119, Te118 Hg 占比>1% Hg202(7.87%), Hg200(6.20%), Hg199(4.55%),
Hg201(3.50%), Hg198(2.72%), Hg204(1.28%)26.69% 占比<1% Hg196, Hg197, Hg194, Hg192, Hg193,
Hg191, Hg195, Hg190, Hg189Cd 占比>1% Cd114(6.42%), Cd112(5.73%), Cd111(3.08%), Cd110(3.04%),
Cd113(2.86%), Cd116(1.67%)23.59% 占比<1% Cd106, Cd108, Cd109, Cd104, Cd107, Cd105, Cd115, Cd124 其他 He4, I126, I124, I123, I125, I128, In112, I127, I129, In111, Sb121, I122, I130, In113, Sb117, Sb119, Sb123, In108, Sb120, Sb122, Ag109, Au193, etc 0.01% 表 3 不同仿真情况下的像素单元MOS管累积电离总剂量情况
Table 3. Total ionizing dose in the MOS of pixel under different simulation fluences.
仿真情况 模拟注量/cm–2 像素单元MOS管
电离总剂量/radA 1010 0 B 1011 0 C 1012 0 D 1013 5301.95 -
[1] 乔辉, 王妮丽, 杨晓阳, 郭强, 蒯文林, 徐国庆, 张冬冬, 李向阳 2023 上海航天(中英文) 40 99
Qiao H, Wang N L, Yang X Y, Guo Q, Kuai W L, Xu G Q, Zhang D D, Lli X Y 2023 Aerospace Shanghai (Chinese & English) 40 99
[2] 蔡毅 2022 红外与激光工程 51 20210988
Cai Y 2022 Infrared Laser Eng. 51 20210988
[3] Marion B R 2009 Proc. of SPIE 7298 72982SGoogle Scholar
[4] 乔辉, 王妮丽, 贾嘉, 兰添翼, 许金通, 杨晓阳, 张燕, 李向阳 2023 激光与红外 53 1534Google Scholar
Qiao H, Wang N L, Jia J, Lan T Y, Xu J T, Yang X Y, Zhang Y, Li X Y 2023 Laser & Infrared 53 1534Google Scholar
[5] 胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar
Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar
[6] 周立庆, 宁提, 张敏, 陈彦冠, 谢珩, 付志凯 2019 激光与红外 49 915
Zhou L Q, Ning T, Zhang M, Chen Y G, Xie H, Fu Z K 2019 Laser & Infrared 49 915
[7] 折伟林, 邢晓帅, 邢伟荣, 刘江高, 郝斐, 杨海燕, 王丹, 侯晓敏, 李振兴, 王成刚 2024 激光与红外 54 483Google Scholar
Zhe W L, Xing X S, Xing W R, Liu J G, Hao F, Yang H Y, Wang D, Hou X M, Li Z X, Wang C G 2024 Laser & Infrared 54 483Google Scholar
[8] 王忆锋, 田萦 2011 红外 32 1Google Scholar
Wang Y F, Tian Y 2011 Infrared 32 1Google Scholar
[9] 江天, 程湘爱, 郑鑫, 许中杰, 江厚满, 陆启生 2012 物理学报 61 137302Google Scholar
Jiang T, Cheng X A, Zheng X, Xu Z J, Jiang H M, Lu Q S 2012 Acta Phys. Sin. 61 137302Google Scholar
[10] 乔辉, 廖毅, 胡伟达, 邓屹, 袁永刚, 张勤耀, 李向阳, 龚海梅 2008 物理学报 57 7088Google Scholar
Qiao H, Liao Y, Hu W D, Deng Y, Yuan Y G, Zhang Q Y, Li X Y, Gong H M 2008 Acta Phys. Sin. 57 7088Google Scholar
[11] Sun X, Abshire J B, Lauenstein J M, Babu S R, Beck J D, Sullivan III W W, Hubbs J E 2021 IEEE Trans. Nucl. Sci. 68 27Google Scholar
[12] Dinand S, Goiffon V, Lambert D, Rizzolo S, Baier N, Borniol E D, Saint-Pé O, Durnez C, Gravrand O 2023 IEEE Trans. Nucl. Sci. 70 1234
[13] 唐宁, 王祖军, 晏石兴, 李传洲, 蒋镕羽 2024 光学学报 44 0928003Google Scholar
Tang N, Wang Z J, Yan S X, Li C Z, Jiang R Y 2024 Acta Opt. Sin. 44 0928003Google Scholar
[14] 王祖军, 赖善坤, 杨勰, 贾同轩, 黄港, 聂栩 2022 半导体光电 43 839
Wang Z J, Lai S K, Yang X, Jia T X, Huang G, Nie X 2022 Semicond. Optoelectron. 43 839
[15] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar
Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar
[16] 白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar
Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar
[17] 魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平 2022 物理学报 71 226102Google Scholar
Wei W J, Gao X D, Lü L L, Xu N N, Li G P 2022 Acta Phys. Sin. 71 226102Google Scholar
[18] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar
Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar
[19] 何欢, 白雨蓉, 田赏, 刘方, 臧航 柳文波, 李培, 贺朝会 2024 物理学报 73 052402Google Scholar
He H, Bai Y R, Tian S, Liu F, Zang H, Liu W B, Li P, He C H 2024 Acta Phys. Sin. 73 052402Google Scholar
[20] 赵俊, 王晓璇, 李雄军, 张应旭, 秦强, 宋林伟, 袁绶章, 孔金丞, 姬荣斌 2023 中国科学: 技术科学 53 1419Google Scholar
Zhao J, Wang X X, Li X J, Zhang Y X, Qin Q, Song L W, Yuan S Z, Kong J C, Ji R B 2023 Sci. Sin. -Technol. 53 1419Google Scholar
[21] Xu R M, Guo Z J, Liu S Y, Yu N M 2024 Chin. J. Electron. 33 415Google Scholar
[22] 张林, 马林东, 杜林, 李艳波, 徐先峰, 黄鑫蓉 2023 物理学报 72 138501Google Scholar
Zhang L, Ma L D, Du L, Li Y B, Xu X F, Huang X R 2023 Acta Phys. Sin. 72 138501Google Scholar
[23] Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150Google Scholar
[24] Akkerman A, Barak J 2007 Nucl. Instrum. Methods Phys. Res. , Sect. B 260 529Google Scholar
[25] Robinson M, Torrens I 1974 Phys. Rev. B 9 5008Google Scholar
[26] Konobeyev A Y, Fischer U, Korovin Y A, Simakov S P 2017 Nucl. Energy Technol. 3 169Google Scholar
计量
- 文章访问数: 198
- PDF下载量: 8
- 被引次数: 0