-
大面阵、高分辨率碲镉汞红外焦平面阵列图像传感器可用于航天遥感、高精度卫星成像等领域,我国下一代气象卫星将全部应用此类图像传感器。然而,空间高能质子会对碲镉汞红外焦平面阵列探测器造成位移损伤效应,同时亦会在其像素单元金属氧化物半导体(MOS)管引入电离总剂量效应。本文以近年来广泛应用于图像传感器的55nm制造工艺碲镉汞红外焦平面阵列图像传感器为对象,基于超大面阵设计时所用的2×2基本像素单元,构建了Geant4仿真模型。并且进行了不同质子入射注量下的仿真研究。获得了不同注量下的位移损伤情况,包括非电离能量损失、离位原子数等。结果表明,空间高能质子累积注量为1013cm-2时,除了考虑碲镉汞红外焦平面阵列图像传感器位移损伤效应外,亦需关注其像素单元MOS管电离总剂量效应。与此同时,结合仿真结果对其空间应用环境中的损伤情况进行了初步评估。该研究可为未来超大面阵碲镉汞红外焦平面阵列图像传感器空间应用提供关键数据支撑。A large-format, high-resolution Hg1-xCdxTe infrared focal plane array (IRFPA) image sensor can be used in aerospace remote sensing and high-precision satellite imaging. The next generation of meteorological satellites in China will fully adopt this type of image sensor. However, space high-energy protons can cause displacement damage effects in Hg1-xCdxTe IRFPA detectors and induce total ionizing dose (TID) effects in the pixel unit metal-oxide-semiconductor (MOS) transistors. This paper focuses on a 55nm manufacturing process Hg1-xCdxTe IRFPA sensor widely used in image sensors, using a 2×2 basic pixel unit model for large-format arrays and constructing a Geant4 simulation model. Simulations were conducted for different proton irradiation fluences, including 1010, 1011, 1012 and 1013 cm-2. The results show the displacement damage under various fluences, including non-ionizing energy loss and displacement atom distribution and others. It was found that, at a proton cumulative fluence of 1013 cm-2, in addition to considering the displacement damage effect in the Hg1-xCdxTe IRFPA sensor, attention must also be paid to the TID effects on the MOS transistors in the pixel units. Additionally, the study provides a preliminary assessment of the damage conditions in the space environment based on simulation results. This research provides crucial data support for the space applications of future large-format Hg1-xCdxTe IRFPA image sensors.
-
Keywords:
- Hg1-xCdxTe /
- infrared focal plane /
- proton /
- Geant4 /
- displacement damage /
- total ionizing dose
-
[1] QIAO H,WANG N L,YANG X Y,GUO Q,KUAI W L,XU G Q,ZHANG D D,LI X Y 2023 Aerospace Shanghai (Chinese & English) 40 99 (in Chinese) [乔 辉,王妮丽,杨晓阳,郭强,蒯文林,徐国庆,张冬冬,李向阳 2023上海航天(中英文)40 99]
[2] CAI Y 2022 Infrared and Laser Engineering 51 20210988 (in Chinese) [蔡毅 2022 红外与激光工程 51 20210988]
[3] Marion B R 2009 Proc. of SPIE. 7298 72982S.
[4] QIAO H, WANG N L, JIA J, LAN T Y, XU J T, YANG X Y, ZHANG Y, LI X Y 2023 Laser & Infrared 53 1534 (in Chinese) [乔辉,王妮丽,贾嘉,兰添翼,许金通,杨晓阳,张燕,李向阳 2023 激光与红外 53 1534]
[5] Hu W D, Li Q, Chen X S, Lu W 2019 Acta. Phys. Sin. 68 120701 (in Chinese) [胡伟达, 李庆, 陈效双, 陆卫 2019物理学报68 120701]
[6] ZHOU L Q, NING T, ZHANG M, CHEN Y G, XIE H, FU Z K 2019 Laser & Infrared 49 945 (in Chinese) [周立庆,宁提,张敏, 陈彦冠,谢珩,付志凯2019激光与红外49 945]
[7] ZHE W L, XING X S, XING W R, LIU J G, HAO F, YANG H Y, WANG D, HOU X M, LI Z X, WANG C G 2024 Laser & Infrared 54 483 (in Chinese) [折伟林,邢晓帅,邢伟荣,刘江高,郝斐,杨海燕,王丹,侯晓敏,李振兴,王成刚2024激光与红外54 483]
[8] Wang Y F, Tian Y 2011 Infrared 32 1 (in Chinese) [王忆峰,田萦 2011红外32 1]
[9] Jiang T, Cheng X A, Zheng X, Xu Z J, Jiang H M, Lu Q S 2012 Acta Phys. Sin. 61 137302 (in Chinese) [江天,程湘爱, 郑鑫,许中杰,江厚满,陆启生 2012 物理学报 61 137302]
[10] Qiao H, Liao Y, Hu W D, Deng Y, Yuan Y G, Zhang Q Y, Li X Y, Gong H M 2008, Acta Phys. Sin. 57 7088 (in Chinese) [乔辉, 廖毅, 胡伟达, 邓屹, 袁永刚, 张勤耀, 李向阳, 龚海梅 2008 物理学报 57 7088]
[11] Sun X, Abshire J B, Lauenstein J M, Babu S R, Beck J D, Sullivan III W W, Hubbs J E 2021 IEEE Trans. Nucl. Sci. 68 27.
[12] Dinand S, Goiffon V, Lambert D, Rizzolo S, Baier N, Borniol E D, Saint-Pé O, Durnez C, Gravrand O 2023 IEEE Trans. Nucl. Sci. 70 1234.
[13] Tang N, Wang Z J, Yan S X, Li C Z, Jiang R Y 2024 Acta Optica. Sin. 44 0928003 (in Chinese) [唐宁,王祖军,晏石兴,李传洲,蒋镕羽 2024光学学报44 0928003]
[14] Wang Z J, Lai S K, Yang X, Jia T X, Huang G, Nie X 2022 Semiconductor Optoelectronics. 43 839 (in Chinese) [王祖军,赖善坤,杨勰,,贾同轩,黄港,聂栩 2022 半导体光电 43 839]
[15] Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401 (in Chinese) [谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401]
[16] Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401 (in Chinese) [白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会2021 物理学报 70 172401]
[17] Wei W J, Gao X D, Lü L L, Xu N N, Li G P 2022 Acta Phys. Sin. 71 226102 (in Chinese) [魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平 2022 物理学报 71 226102]
[18] Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401 (in Chinese) [李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401]
[19] He H, Bai Y R, Tian S, Liu F, Zang H, Liu W B, Li P, He C H 2024 Acta Phys. Sin. 73 052402 (in Chinese) [何欢, 白雨蓉, 田赏, 刘方, 臧航 柳文波, 李培, 贺朝会2024 物理学报 73 052402]
[20] ZHAO J, WANG X X, LI X J, ZHANG Y X, QIN Q, SONG L W, YUAN S Z, KONG J C, JI R B 2023 Sci. Sin.-Tech. 53 1419 (in Chinese) [赵俊, 王晓璇, 李雄军, 张应旭, 秦强, 宋林伟, 袁绶章, 孔金丞, 姬荣斌 2023 中国科学: 技术科学 53 1419]
[21] Xu R M, Guo Z J, Liu S Y, Yu N M 2022 Chinese Journal of Electronics 4 1.
[22] Zhang L, Ma L D, Du L, Li Y B, Xu X F, Huang X R 2023 Acta Phys. Sin. 72 138501 (in Chinese) [张林, 马林东, 杜林, 李艳波, 徐先峰, 黄鑫蓉 2023 物理学报 72 138501]
[23] Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150.
[24] Akkerman A, Barak J 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 260 529
[25] Robinson M, Torrens I 1974 Phys. Rev. B 9 5008.
[26] Konobeyev A Y, Fischer U, Korovin Y A, Simakov S P 2017 Nuclear Energy and Technology 3 169.
计量
- 文章访问数: 101
- PDF下载量: 3
- 被引次数: 0