搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宇宙线高能粒子对测试质量充电机制

韩瑞龙 蔡明辉 杨涛 许亮亮 夏清 韩建伟

引用本文:
Citation:

宇宙线高能粒子对测试质量充电机制

韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟

Mechanism of cosmic ray high-energy particles charging test mass

Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei
PDF
HTML
导出引用
  • 测试质量是空间引力波测量的核心传感器, 宇宙线高能粒子能够穿透航天器屏蔽对其造成电荷注入, 进而产生库仑力和洛伦兹力噪声对引力波科学探测造成严重影响. 本文采用蒙特卡洛仿真方法, 探究了不同宇宙线高能粒子对测试质量的充电过程和机制. 研究结果表明, 在同一能谱下随着截止能量的降低充电速率逐步增大, 充电速率变化约为9%; 太阳活动极小年时测试质量的充电速率为39.5 +e/s, 其中贡献最大的质子占比约为83.16%, 太阳活动极大年时测试质量的充电速率约为12.5 +e/s, 1989年最恶劣的太阳高能粒子事件造成测试质量的充电速率约为120700 +e/s; 在太阳活动极小年时, 银河宇宙线各成分的充电速率取决于各成分的初级粒子在测试质量中的沉积, 其中初级粒子贡献占测试质量总充电速率的73%; 太阳活动极小年时, 质子的充电贡献主要来自能量为0.1—1 GeV的区间, 占比约为65%. 研究结果可用于评估测试质量在轨充电规律, 为电荷管理的设计和在轨工作提供依据.
    The testing mass is the core sensor for measuring the spatial gravitational waves. The high-energy cosmic ray particles penetrating the outer structure of the spacecraft result in the electrical charges on the testing mass. The Coulomb force produced by the charges on the surrounding conducting surface and the Lorentz force generated by the motion through the interplanetary magnetic field will exert a serious influence on the geodesic motion of the testing mass. In this paper are investigated the process and mechanism of charging the testing mass by high-energy particles from different cosmic rays through using the Monte Carlo simulation method. It is concluded that the charging rate gradually increases with the decrease of cut-off energy under the same energy spectrum. The positive charging rate (elementary charges per second) in the years of minimum solar activity is predicted to be 39.5 +e/s, and the protons account for approximately 83.16% of the total quantity of galactic cosmic rays. The positive charging rate of the testing mass during the years of maximum solar activity is about 12.5 +e/s, and the charging rate of the testing mass of the worst solar energetic particle event in 1989 is about 120700 +e/s. The charging rate of the components of the galactic cosmic ray depends on the deposition of primary particles of each component in the testing mass during the years of minimum solar activity, with primary particles accounting for 73% of the total charging rate. The charging contribution of protons in years of minimum solar activity is mainly in an energy range of 0.1–1 GeV, accounting for about 65%. The research results can be used to assess the charging patterns of test quality on-orbit charges and provide a basis for designing the charge management and on-orbit work.
      通信作者: 蔡明辉, caiminghui@nssc.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFC2201300)、科工局重大软件研制专项(批准号: E01Z360101)和航天科工二院未来实验室自主创新联合基金(批准号: YQQT202102645)资助的课题
      Corresponding author: Cai Ming-Hui, caiminghui@nssc.ac.cn
    • Funds: Project supported by National Key Research and Development Program (Grant No. 2020YFC2201300), the Major Software Development Special Project of the Science and Technology Bureau, China (Grant No. E01Z360101), and the Joint Fund for Independent Innovation of the Future Laboratory of the Second Academy of Aerospace Science and Industry, China(Grant No. YQQT202102645)
    [1]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 1Google Scholar

    [2]

    雷中华, 兰明建, 汪先友, 李建杰 2008 物理学报 57 7408Google Scholar

    Lei Z H, Lan M J, Wang X Y, Li J J 2008 Acta Phys. Sin. 57 7408Google Scholar

    [3]

    Jafry Y, Sumner T J, Buchman S 1996 Classical Quantum Gravity 13 A97Google Scholar

    [4]

    Jafry Y, Sumner T J 1997 Classical Quantum Gravity 14 1567Google Scholar

    [5]

    Sumner T J, Jafry Y 2000 Adv. Space Res. 25 1219Google Scholar

    [6]

    Araújo H M, Howard A, Shaul D, Sumner T J 2003 Classical Quantum Gravity 20 S311Google Scholar

    [7]

    Shaul D N A, Sumner T J, Araújo H M, Rochester G K, Wass P J, Lee C G Y 2004 Classical Quantum Gravity 21 S647Google Scholar

    [8]

    Sumner T, Araújo H, Davidge D, Howard A, Lee C, Rochester G, Shaul D, Wass P 2004 Classical Quantum Gravity 21 S597Google Scholar

    [9]

    Vocca H, Grimani C, Amico P, Bosi L, Marchesoni F, Punturo M, Travasso F, Barone M, Stanga R, Vetrano F, Viceré A 2004 Classical Quantum Gravity 21 S665Google Scholar

    [10]

    包纲, 倪维斗, 柳磊, Araújo H, Shaul D, Sumner T 2004 紫金山天文台台刊 23 105

    Bao G, Ni W T, Liu L, Araújo H, Shaul D, Sumner T 2004 Publ. Purple Mt. Observatory 23 105

    [11]

    Bao G, Ni W T, Shaul D N A, Araújo H M, Liu L, Sumner T J 2008 Int. J. Mod. Phys. D 17 965Google Scholar

    [12]

    Grimani C, Fabi M, Lobo A, Mateos I, Telloni D 2015 Classical. Quantum Gravity. 32 035001Google Scholar

    [13]

    Wass P J, Araújo H M, Shaul D N A, Sumner T J 2005 Classical. Quantum Gravity. 22 S311Google Scholar

    [14]

    Armano M, Audley H, Auger G, Baird J T, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, Silva M, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E D, Flatscher R, Freschi M, Gallegos J, Marirrodriga C, Gerndt R, Gesa L, Gibert F, Giardini D, Giusteri R, Grimani C, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspé H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Killow C J, Korsakova N, Lloro I, Liu L, López-Zaragoza J P, Maarschalkerweerd R, Madden S, Mance D, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Mateos I, McNamara P W, Mendes J, Mendes L, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Perez J A, Robertson D I, Rozemeijer H, Rivas F, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta C, Sumner T J, Texier D, Thorpe J I, Trenkel C, Vetrugno D, Vitale S, Wanner G, Ward H, Wass P J, Wealthy D, Weber W J, Wittchen A, Zanoni C, Ziegler T, Zweifel P 2017 Phys. Rev. Lett. 118 171101Google Scholar

    [15]

    Araújo H M, Wass P, Shaul D, Rochester G, Sumner T J 2005 Astropart. Phys. 22 451Google Scholar

    [16]

    罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar

    Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu S H, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech. 43 415Google Scholar

    [17]

    Myers Z D, Seo E S, Abe K, Anraku K, Imori M, Maeno T, Makida Y, Matsumoto H, Mitchell J, Moiseev A, Nishimura J, Nozaki M, Ormes J F, Orito S, Sanuki T, Sasaki M, Shikaze Y, Streitmatter R E, Suzuki J, Tanaka K, Yamagami T, Yamamoto A, Yoshida T, Yoshimura K 2003 In International Cosmic Ray Conference Tsukuba, Japan, July 31–August 7, 2003 p1805

    [18]

    Wang J Z, Seo E S, Anraku K, Fujikawa M, Imori M, Maeno T, Matsui N, Matsunaga H, Motoki M, Orito S, Saeki T, Sanuki T, Ueda I, Yoshimura K, Makida Y, Suzuki J, Tanaka K, Yamamoto A, Yoshida T, Mitsui T, Matsumoto H, Nozaki M, Sasaki M, Mitchell J, Moiseev A, Ormes J, Streitmatter R, Nishimura J, Yajima Y, Yamagami T 2002 Astrophys. J. 564 244Google Scholar

    [19]

    Casolino M, Santis C D, Simone N D, Formato V, Nikonov N, Picozza P 2011 Astrophys. Space Sci. Trans. 7 465Google Scholar

    [20]

    Abe K, Fuke H, Haino S, Hams T, Hasegawa M, Horikoshi A, Itazaki A, Kim K C, Kumazawa T, Kusumoto A, Lee M H, Makida Y, Matsuda S, Matsukawa Y, Matsumoto K, Mitchell J W, Moiseev A A, Nishimura J, Nozaki M, Orito R, Ormes J F, Picot-Clémente N, Sakai K, Sasaki M, Seo E S, Shikaze Y, Shinoda R, Streitmatter R E, Suzuki J, Takasugi Y, Takeuchi K, Tanaka K, Thakur N, Yamagami T, Yamamoto A, Yoshida T, Yoshimura K 2014 Adv. Space Res. 53 1426Google Scholar

    [21]

    Grimani C, Vocca H, Bagni G, Marconi L, Stanga R, Vetrano F, Viceré A, Amico P, Gammaitoni L, Marchesoni F 2005 Classical. Quantum Gravity. 22 S327Google Scholar

    [22]

    Papini P, Grimani C, Stephens S A 1996 Il Nuovo Cim. C 19 367Google Scholar

    [23]

    Grimani C, Vocca H, Barone M, Stanga R, Vetrano F, Viceré A, Amico P, Bosi L, Marchesoni F, Punturo M, Travasso F 2004 Classical. Quantum Gravity. 21 S629Google Scholar

  • 图 1  LISA航天器模型 (a)整体模型; (b)惯性传感器模型

    Fig. 1.  LISA spacecraft model: (a) Overall model; (b) inertial sensor model.

    图 2  本文航天器模型图 (a) geant4模型图; (b)模型平面示意图

    Fig. 2.  The spacecraft model diagram in this paper: (a) Geant4 model diagram; (b) schematic diagram of the model plane.

    图 3  1 AU处GCR各粒子微分能谱

    Fig. 3.  Differential energy spectra of each element of GCR at 1 AU.

    图 4  1AU处1989年SEP微分能谱

    Fig. 4.  1989 SEP differential energy spectra at 1AU.

    图 5  宇宙线Proton和He(3He和4He)微分能谱

    Fig. 5.  Differential energy spectra of cosmic rays Proton and He (3He and 4He).

    图 6  不同截断长度的充电速率

    Fig. 6.  Charging rate with different cut-off lengths.

    图 7  宇宙线各粒子的充电率 (a) 太阳活动极小年; (b) 太阳活动极大年

    Fig. 7.  The charging rate of each particle of cosmic rays: (a) Solar minimum year; (b) solar maximum year.

    图 8  宇宙线各粒子的充电能力

    Fig. 8.  The charging ability of each particle of the cosmic ray

    图 9  太阳活动极小充电能力 (a) 不同能量充电能力和质子通量; (b) 充电能力和结合质子通量的总充电比例

    Fig. 9.  Solar minimum charging capacity: (a) Different energy charging capacity and proton flux; (b) charging capacity and total charge ratio of combined proton flux.

    表 1  航天器几何尺寸和材料构成

    Table 1.  Spacecraft geometric dimensions and material composition.

    名称组成成分密度/(g·cm–3)尺寸厚度/mm
    测试质量Au(70%); Pt(30%)19.83746 mm立方体
    钼电极Mo10.2874—86 mm立方体壳层6
    钛室Ti4.5475—80 mm球壳层5
    碳外壳C2.1080—100 mm球壳层20
    下载: 导出CSV

    表 2  太阳极小年3He/4He的参数化比例C(m)

    Table 2.  The parameterized ratio C(m) of 3He/4He in solar minimum.

    E/(GeV·n–1)0.10 ≤ E ≤ 0.360.36 ≤ E ≤ 1.001.00 ≤ E ≤ 1.40E > 1.40
    C(m)0.335 × E0.5690.1870.187 × E0.4910.22
    下载: 导出CSV

    表 3  太阳极大年3He/4He的参数化比例C(M)

    Table 3.  The parameterized ratio C(M) of 3He/4He during solar maximum.

    E/(GeV·n–1)0.10 ≤ E ≤ 0.300.30 ≤ E ≤ 0.800.80 ≤ E ≤ 2.50E > 2.50
    C(M)0.239 × E0.5380.1250.140 × E0.4960.22
    下载: 导出CSV

    表 4  太阳极小年宇宙线主要粒子仿真参数

    Table 4.  The main particle simulation parameters of cosmic rays during solar minimum.

    粒子种类粒子数目/个暴露时间/s积分通量/(cm–2·s–1)
    Proton700000353.654.375
    3He1000003563.350.062
    4He120000806.260.329
    C10000021052.630.0105
    N10000077561.470.00285
    O10000022128.790.00999
    Ne1000013644.980.00162
    Mg1000010476.250.00211
    Si1000014542.700.00152
    Fe1000019562.200.00113
    下载: 导出CSV

    表 5  太阳极大年宇宙线主要粒子仿真参数

    Table 5.  The main particle simulation parameters of cosmic rays during solar maximum.

    粒子种类粒子数目/个暴露时间/s积分通量/(cm–2·s–1)
    Proton700000353.654.375
    3He1000003563.350.062
    4He120000806.260.329
    下载: 导出CSV

    表 6  1989年9月29日太阳高能粒子事件仿真参数

    Table 6.  Simulation parameters of the SEP event on September 29, 1989.

    粒子种类粒子数目/个暴露时间/s积分通量/(cm–2·s–1)
    Proton5000000.1507385.53
    下载: 导出CSV

    表 7  宇宙线初、次级粒子造成的充电率

    Table 7.  Charge rate caused by primary and secondary particles of cosmic rays.

    粒子
    种类
    初级粒子充电
    率/(+e·s–1)
    次级粒子充电
    率/(+e·s–1)
    初级粒子
    充电率占比
    Proton22.01610.80567.07%
    3He1.196–0.029100%
    4He5.125–0.100100%
    C0.1820.02388.78%
    N0.0420.00982.35%
    O0.1230.02086.01%
    Ne0.01320.002683.54%
    Mg0.01370.006468.16%
    Si0.00870.005860%
    Fe00.00840%
    下载: 导出CSV
  • [1]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 1Google Scholar

    [2]

    雷中华, 兰明建, 汪先友, 李建杰 2008 物理学报 57 7408Google Scholar

    Lei Z H, Lan M J, Wang X Y, Li J J 2008 Acta Phys. Sin. 57 7408Google Scholar

    [3]

    Jafry Y, Sumner T J, Buchman S 1996 Classical Quantum Gravity 13 A97Google Scholar

    [4]

    Jafry Y, Sumner T J 1997 Classical Quantum Gravity 14 1567Google Scholar

    [5]

    Sumner T J, Jafry Y 2000 Adv. Space Res. 25 1219Google Scholar

    [6]

    Araújo H M, Howard A, Shaul D, Sumner T J 2003 Classical Quantum Gravity 20 S311Google Scholar

    [7]

    Shaul D N A, Sumner T J, Araújo H M, Rochester G K, Wass P J, Lee C G Y 2004 Classical Quantum Gravity 21 S647Google Scholar

    [8]

    Sumner T, Araújo H, Davidge D, Howard A, Lee C, Rochester G, Shaul D, Wass P 2004 Classical Quantum Gravity 21 S597Google Scholar

    [9]

    Vocca H, Grimani C, Amico P, Bosi L, Marchesoni F, Punturo M, Travasso F, Barone M, Stanga R, Vetrano F, Viceré A 2004 Classical Quantum Gravity 21 S665Google Scholar

    [10]

    包纲, 倪维斗, 柳磊, Araújo H, Shaul D, Sumner T 2004 紫金山天文台台刊 23 105

    Bao G, Ni W T, Liu L, Araújo H, Shaul D, Sumner T 2004 Publ. Purple Mt. Observatory 23 105

    [11]

    Bao G, Ni W T, Shaul D N A, Araújo H M, Liu L, Sumner T J 2008 Int. J. Mod. Phys. D 17 965Google Scholar

    [12]

    Grimani C, Fabi M, Lobo A, Mateos I, Telloni D 2015 Classical. Quantum Gravity. 32 035001Google Scholar

    [13]

    Wass P J, Araújo H M, Shaul D N A, Sumner T J 2005 Classical. Quantum Gravity. 22 S311Google Scholar

    [14]

    Armano M, Audley H, Auger G, Baird J T, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, Silva M, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E D, Flatscher R, Freschi M, Gallegos J, Marirrodriga C, Gerndt R, Gesa L, Gibert F, Giardini D, Giusteri R, Grimani C, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspé H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Killow C J, Korsakova N, Lloro I, Liu L, López-Zaragoza J P, Maarschalkerweerd R, Madden S, Mance D, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Mateos I, McNamara P W, Mendes J, Mendes L, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Perez J A, Robertson D I, Rozemeijer H, Rivas F, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta C, Sumner T J, Texier D, Thorpe J I, Trenkel C, Vetrugno D, Vitale S, Wanner G, Ward H, Wass P J, Wealthy D, Weber W J, Wittchen A, Zanoni C, Ziegler T, Zweifel P 2017 Phys. Rev. Lett. 118 171101Google Scholar

    [15]

    Araújo H M, Wass P, Shaul D, Rochester G, Sumner T J 2005 Astropart. Phys. 22 451Google Scholar

    [16]

    罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar

    Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu S H, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech. 43 415Google Scholar

    [17]

    Myers Z D, Seo E S, Abe K, Anraku K, Imori M, Maeno T, Makida Y, Matsumoto H, Mitchell J, Moiseev A, Nishimura J, Nozaki M, Ormes J F, Orito S, Sanuki T, Sasaki M, Shikaze Y, Streitmatter R E, Suzuki J, Tanaka K, Yamagami T, Yamamoto A, Yoshida T, Yoshimura K 2003 In International Cosmic Ray Conference Tsukuba, Japan, July 31–August 7, 2003 p1805

    [18]

    Wang J Z, Seo E S, Anraku K, Fujikawa M, Imori M, Maeno T, Matsui N, Matsunaga H, Motoki M, Orito S, Saeki T, Sanuki T, Ueda I, Yoshimura K, Makida Y, Suzuki J, Tanaka K, Yamamoto A, Yoshida T, Mitsui T, Matsumoto H, Nozaki M, Sasaki M, Mitchell J, Moiseev A, Ormes J, Streitmatter R, Nishimura J, Yajima Y, Yamagami T 2002 Astrophys. J. 564 244Google Scholar

    [19]

    Casolino M, Santis C D, Simone N D, Formato V, Nikonov N, Picozza P 2011 Astrophys. Space Sci. Trans. 7 465Google Scholar

    [20]

    Abe K, Fuke H, Haino S, Hams T, Hasegawa M, Horikoshi A, Itazaki A, Kim K C, Kumazawa T, Kusumoto A, Lee M H, Makida Y, Matsuda S, Matsukawa Y, Matsumoto K, Mitchell J W, Moiseev A A, Nishimura J, Nozaki M, Orito R, Ormes J F, Picot-Clémente N, Sakai K, Sasaki M, Seo E S, Shikaze Y, Shinoda R, Streitmatter R E, Suzuki J, Takasugi Y, Takeuchi K, Tanaka K, Thakur N, Yamagami T, Yamamoto A, Yoshida T, Yoshimura K 2014 Adv. Space Res. 53 1426Google Scholar

    [21]

    Grimani C, Vocca H, Bagni G, Marconi L, Stanga R, Vetrano F, Viceré A, Amico P, Gammaitoni L, Marchesoni F 2005 Classical. Quantum Gravity. 22 S327Google Scholar

    [22]

    Papini P, Grimani C, Stephens S A 1996 Il Nuovo Cim. C 19 367Google Scholar

    [23]

    Grimani C, Vocca H, Barone M, Stanga R, Vetrano F, Viceré A, Amico P, Bosi L, Marchesoni F, Punturo M, Travasso F 2004 Classical. Quantum Gravity. 21 S629Google Scholar

  • [1] 白雨蓉, 李培, 何欢, 刘方, 李薇, 贺朝会. 近地轨道质子和α粒子入射InP产生的位移损伤模拟. 物理学报, 2024, 73(5): 052401. doi: 10.7498/aps.73.20231499
    [2] 杨卫涛, 武艺琛, 许睿明, 时光, 宁提, 王斌, 刘欢, 郭仲杰, 喻松林, 吴龙胜. 碲镉汞红外焦平面阵列图像传感器空间质子位移损伤及电离总剂量效应Geant4仿真. 物理学报, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [3] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [4] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [5] 张丰, 刘虎, 祝凤荣. 膝区宇宙线广延大气簇射次级成分的特征. 物理学报, 2022, 71(24): 249601. doi: 10.7498/aps.71.20221556
    [6] 黄志成, 周勋秀, 黄代绘, 贾焕玉, 陈松战, 马欣华, 刘栋, 阿西克古, 赵兵, 陈林, 王培汉. 高海拔宇宙线观测实验中scaler模式的模拟研究. 物理学报, 2021, 70(19): 199301. doi: 10.7498/aps.70.20210632
    [7] 白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会. 空间重离子入射磷化铟的位移损伤模拟. 物理学报, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [8] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [9] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [10] 姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩. ST401塑料闪烁体的脉冲中子相对光产额评估方法. 物理学报, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [11] 贾清刚, 张天奎, 许海波. 基于前冲康普顿电子高能伽马能谱测量系统设计. 物理学报, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [12] 周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇. 近地雷暴电场与羊八井地面宇宙线关联的模拟研究. 物理学报, 2015, 64(14): 149202. doi: 10.7498/aps.64.149202
    [13] 王俊芳, 郄秀书, 卢红, 张吉龙, 于晓霞, 石峰. 雷暴电场对宇宙射线次级粒子 子的影响研究. 物理学报, 2012, 61(15): 159202. doi: 10.7498/aps.61.159202
    [14] 王玉诏, 伍歆, 钟双英. 旋转致密双星的引力波特征. 物理学报, 2012, 61(16): 160401. doi: 10.7498/aps.61.160401
    [15] 钟双英, 刘崧. 旋转致密双星后牛顿轨道的引力波研究. 物理学报, 2012, 61(12): 120401. doi: 10.7498/aps.61.120401
    [16] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算. 物理学报, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [17] 雷中华, 兰明建, 汪先友, 李建杰. 遗迹引力波对宇宙微波背景辐射极化的影响. 物理学报, 2008, 57(11): 7408-7414. doi: 10.7498/aps.57.7408
    [18] 阎永廉, 秦荣先. 集中质量音叉式引力波天线的三自由度模型. 物理学报, 1983, 32(12): 1586-1588. doi: 10.7498/aps.32.1586
    [19] 徐步新, 秦荣先. 集中质量音叉式引力波天线与Vela星引力辐射探测的探讨. 物理学报, 1982, 31(8): 1097-1106. doi: 10.7498/aps.31.1097
    [20] 郑吉母, 蒋孟闵. 落雪山宇宙线强度的气压系数. 物理学报, 1960, 16(3): 175-176. doi: 10.7498/aps.16.175
计量
  • 文章访问数:  5908
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2021-08-26
  • 上网日期:  2021-09-07
  • 刊出日期:  2021-11-20

/

返回文章
返回