搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地基激光干涉引力波探测器的升级与改造

黄小曼 刘见 郭越凡 马怡秋 马宇波 王浩宇 王梦瑶 吴斌 杨圣 尤志强 张帆 张腾 肇宇航 朱兴江

引用本文:
Citation:

地基激光干涉引力波探测器的升级与改造

黄小曼, 刘见, 郭越凡, 马怡秋, 马宇波, 王浩宇, 王梦瑶, 吴斌, 杨圣, 尤志强, 张帆, 张腾, 肇宇航, 朱兴江

Upgrades and Improvements of Laser Interferometric Gravitational Wave Detectors

HUANG Xiaoman, LIU Jian, GUO Yuefan, MA Yiqiu, MA Yubo, WANG Haoyu, WANG Mengyao, WU Bin, YANG Sheng, YOU Zhiqiang, ZHANG Fan, ZHANG Teng, ZHAO Yuhang, ZHU Xingjiang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 地基激光干涉引力波探测器不仅首次发现引力波、开创了一个观测天文学的全新分支——引力波天文学,同时也是物理学相关领域前沿科学与先进技术的成功典范。为了实现引力波探测的目标,使引力波成为一个常态化的天文观测手段,全球主要地基引力波探测器经历了持续数十年的技术升级与改造。本文重点介绍LIGO、Virgo和KAGRA等探测器的升级历程,详细分析了其关键技术改进,包括激光功率增强、悬挂与隔振系统优化以及量子噪声抑制等方面进展。这些技术进步显著提升了探测器在10至几千赫兹的灵敏度,使其成功探测到数以百计的致密天体并合引力波信号。展望未来,第三代地基引力波探测器的建设将大幅度拓展引力波的探测能力,为物理学和天文学研究开辟新的视野。
    Gravitational wave astronomy has rapidly developed into a powerful means of probing compact objects and understanding the evolution of the Universe. To improve sensitivity and extend the detection band, ground-based laser interferometers such as LIGO, Virgo, and KAGRA have undergone continuous upgrades. This review summarizes their systematic development with an emphasis on noise sources and mitigation strategies. After outlining the principle of gravitational wave detection with laser interferometry, we analyze dominant noise sources including quantum vacuum fluctuations, thermal noise, and seismic disturbances, and introduce techniques such as frequency-dependent squeezed light, advanced seismic isolation, multi-stage suspensions, and cryogenic mirrors. For LIGO, we highlight the transition from the Initial to Advanced configurations, which enabled strain sensitivities of the order of 10-24/√Hz and led directly to the first detection GW150914 and over one hundred subsequent events during O1 to O4. The unique superattenuator system of Virgo and its recent implementation of squeezed light, as well as the underground design of KAGRA and the use of cryogenic sapphire test masses, represent different approaches to suppress low-frequency and thermal noise. In addition, we compare the technical routes adopted by different detectors and summarize the lessons learned from their upgrades, which provide valuable guidance for future detector designs. Finally, we present next-generation projects, including LIGO Voyager, the Cosmic Explorer and the Einstein Telescope, which aim to achieve up to orders of magnitude improvements in sensitivity and provide new research opportunities for gravitational-wave cosmology and fundamental physics. Overall, the evolution of detector technologies has been the key driver of progress in gravitational wave astronomy, and the forthcoming facilities will transform our ability to explore the Universe.
  • [1]

    Einstein A 1915 Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 831 1915

    [2]

    Danzmann K, Team L S, et al. 1996 Class. Quantum Grav. 13 A247

    [3]

    Luo J, Chen L S, Duan H Z, Gong Y G, Hu S, Ji J, Liu Q, Mei J, Milyukov V, Sazhin M, et al. 2016 Class. Quantum Grav. 33 035010

    [4]

    Luo Z, Guo Z, Jin G, Wu Y, Hu W 2020 Results Phys. 16 102918

    [5]

    Weber J 1969 Phys. Rev. Lett. 22 1320

    [6]

    Whitcomb S E 2008 Class. Quantum Grav. 25 114013

    [7]

    Chen C M, Nester J M, Ni W T 2017 Chin. J. Phys. 55 142

    [8]

    Sigg D, for the LIGO Science Collaboration, et al. 2006 Class. Quantum Grav. 23 S51

    [9]

    Acernese F, Amico P, Arnaud N, Babusci D, Ballardin G, Barille R, Barone F, Barsuglia M, Beauville F, Bellachia F, et al. 2003 Class. Quantum Grav. 20 S609

    [10]

    Somiya K, KAGRA Collaboration, et al. 2012 Class. Quantum Grav. 29 124007

    [11]

    Saulson P R 1994 Fundamentals of interferometric gravitational wave detectors (World Scientific)

    [12]

    Harms J, Chen Y, Chelkowski S, Franzen A, Vahlbruch H, Danzmann K, Schnabel R 2003 Phys. Rev. D 68 042001

    [13]

    Harms J, Venkateswara K 2016 Class. Quantum Grav. 33 234001

    [14]

    Trozzo L, Badaracco F 2022 Galaxies 10 20

    [15]

    Harms J, Slagmolen B J, Adhikari R X, Miller M C, Evans M, Chen Y, Müller H, Ando M 2013 Phys. Rev. D 88 122003

    [16]

    Driggers J C, Harms J, Adhikari R X 2012 Phys. Rev. D 86 102001

    [17]

    Creighton J D, Anderson W G 2012 Gravitational-wave physics and astronomy: An introduction to theory, experiment and data analysis (John Wiley & Sons)

    [18]

    M C 1981 Phys. Rev. D 23 1693

    [19]

    Ganapathy D, Jia W, Nakano M, Xu V, Aritomi N, Cullen T, Kijbunchoo N, Dwyer S, Mullavey A, McCuller L, et al. 2023 Phys. Rev. X 13 041021

    [20]

    LIGO Scientific Collaboration 2011 Nat. Phys. 7 962

    [21]

    Yu H, McCuller L, Tse M, Kijbunchoo N, Barsotti L, Mavalvala N 2020 Nature 583 43

    [22]

    Shapiro B, Adhikari R X, Aguiar O, Bonilla E, Fan D, Gan L, Gomez I, Khandelwal S, Lantz B, MacDonald T, et al. 2017 Cryogenics 81 83

    [23]

    Saulson P R 1990 Phys. Rev. D 42 2437

    [24]

    Hammond G, Cumming A, Hough J, Kumar R, Tokmakov K, Reid S, Rowan S 2012 Class. Quantum Grav. 29 124009

    [25]

    Cumming A, Bell A, Barsotti L, Barton M, Cagnoli G, Cook D, Cunningham L, Evans M, Hammond G, Harry G, et al. 2012 Class. Quantum Grav. 29 035003

    [26]

    Harry G M, Gretarsson A M, Saulson P R, Kittelberger S E, Penn S D, Startin W J, Rowan S, Fejer M M, Crooks D, Cagnoli G, et al. 2002 Class. Quantum Grav. 19 897

    [27]

    Hong T, Yang H, Gustafson E K, Adhikari R X, Chen Y 2013 Phys. Rev. D 87 082001

    [28]

    Cole G D, Zhang W, Martin M J, Ye J, Aspelmeyer M 2013 Nat. Photonics 7 644

    [29]

    Kondratiev N, Gurkovsky A, Gorodetsky M 2011 Phys. Rev. D 84 022001

    [30]

    Zhou R, Molina-Ruiz M, Hellman F 2023 Class. Quantum Grav. 40 144001

    [31]

    E Z M, E W S 1996 In Proceedings of the Seventh Marcel Grossman Meeting on recent developments in theoretical and experimental general relativity, gravitation, and relativistic field theories (SpringerVerlag, Berlin), p 1434

    [32]

    Aasi J, Abbott B, Abbott R, Abbott T, Abernathy M, Ackley K, Adams C, Adams T, Addesso P, Adhikari R, et al. 2015 Class. Quantum Grav. 32 074001

    [33]

    Abramovici A, Althouse W E, Drever R W, Gürsel Y, Kawamura S, Raab F J, Shoemaker D, Sievers L, Spero R E, Thorne K S, et al. 1992 science 256 325

    [34]

    Accadia T, Acernese F, Antonucci F, Astone P, Ballardin G, Barone F, Barsuglia M, Basti A, Bauer T S, Bebronne M, et al. 2011 Class. Quantum Grav. 28 114002

    [35]

    Willke B, Aufmuth P, Aulbert C, Babak S, Balasubramanian R, Barr B, Berukoff S, Bose S, Cagnoli G, Casey M M, et al. 2002 Class. Quantum Grav. 19 1377

    [36]

    Takahashi R, collaboration T, et al. 2004 Class. Quantum Grav. 21 S403

    [37]

    Acernese F, Agathos M, Agatsuma K, Aisa D, Allemandou N, Allocca A, Amarni J, Astone P, Balestri G, Ballardin G, et al. 2014 Class. Quantum Grav. 32 024001

    [38]

    KAGRA Collaboration 2019 Nat. Astron. 3 35

    [39]

    LIGO Scientific Collaboration 2024. https://www.ligo.caltech.edu

    [40]

    Abbott B, Abbott R, Adhikari R, Ageev A, Allen B, Amin R, Anderson S, Anderson W, Araya M, Armandula H, et al. 2004 Nucl. Instrum. Methods Phys. Res. 517 154

    [41]

    Adhikari R X, González G, Landry M, O’Reilly B 2003 Class. Quantum Grav. 20

    [42]

    Abbott B, Abbott R, Adhikari R, Ageev A, Agresti J, Allen B, Allen J, Amin R, Anderson S, Anderson W, et al. 2005 Phys. Rev. D 72 062001

    [43]

    Aasi J, Abadie J, Abbott B, Abbott R, Abbott T, Abernathy M, Accadia T, Acernese F, Adams C, Adams T, et al. 2015 Class. Quantum Grav. 32 115012

    [44]

    Ballmer S, Frolov V, Lawrence R, Kells W, Moreno G, Mason K, Ottaway D, Smith M, Vorvick C, Willems P, et al. 2005 LIGO-Document: LIGO-T050064-00-R

    [45]

    Fritschel P, Bork R, González G, Mavalvala N, Ouimette D, Rong H, Sigg D, Zucker M 2001 Appl. Opt. 40 4988

    [46]

    Fricke T T, Smith-Lefebvre N D, Abbott R, Adhikari R, Dooley K L, Evans M, Fritschel P, Frolov V V, Kawabe K, Kissel J S, et al. 2012 Class. Quantum Grav. 29 065005

    [47]

    Driggers J, Frolov V, Atkinson D, Miao H, Landry M, Adhikari R, DeRosa R 2010 LIGO-Document: LIGO-P1000088

    [48]

    Schofield 2010 LIGO-Document:LIGO-G1000923

    [49]

    Smith N D 2012 Techniques for improving the readout sensitivity of gravitational wave antennae. Ph.d. dissertation, (Cambridge, MA: Massachusetts Institute of Technology)

    [50]

    Abbott B P, Abbott R, Abbott T, Abernathy M, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, et al. 2016 Phys. Rev. Lett. 116 061102

    [51]

    Somiya K, Chen Y, Kawamura S, Mio N 2006 Phys. Rev. D 73 122005

    [52]

    Kwee P, Bogan C, Danzmann K, Frede M, Kim H, King P, Pöld J, Puncken O, Savage R L, Seifert F, et al. 2012 Opt. Express 20 10617

    [53]

    P F 2003 In Gravitational-Wave Detection, vol. 4856. p 282. (SPIE)

    [54]

    Gretarsson A M, Harry G M, Penn S D, Saulson P R, Startin W J, Rowan S, Cagnoli G, Hough J 2000 Phys. Lett. A 270 108

    [55]

    Matichard F, Lantz B, Mittleman R, Mason K, Kissel J, Abbott B, Biscans S, McIver J, Abbott R, Abbott S, et al. 2015 Class. Quantum Grav. 32 185003

    [56]

    De Rosa R, Garufi F, Milano L, Mosca S, Persichetti G 2010 In Journal of Physics: Conference Series, vol. 228 (IOP Publishing), p 012018

    [57]

    Martynov D V, Hall E, Abbott B, Abbott R, Abbott T, Adams C, Adhikari R, Anderson R, Anderson S, Arai K, et al. 2016 Phys. Rev. D 93 112004

    [58]

    Evans M, Gras S, Fritschel P, Miller J, Barsotti L, Martynov D, Brooks A, Coyne D, Abbott R, Adhikari R X, et al. 2015 Phys. Rev. Lett. 114 161102

    [59]

    Braginsky V B, Strigin S E, Vyatchanin S P 2002 Phys. Lett. A 305 111

    [60]

    Abbott B, Abbott R, Abbott T, Abernathy M, Acernese F, Ackley K, et al. 2016 Class. Quantum Grav. 33 134001

    [61]

    Abbott B P, Abbott R, Abbott T D, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, Adya V B, et al. 2017 Phys. Rev. D 96 062002

    [62]

    Abbott B P, Abbott R, Abbott T, Abraham S, Acernese F, Ackley K, Adams C, Adhikari R, Adya V, Affeldt C, et al. 2019 Phys. Rev. X 9 031040

    [63]

    Davis D, Massinger T, Lundgren A, Driggers J C, Urban A L, Nuttall L 2019 Class. Quantum Grav. 36 055011

    [64]

    Abbott B P, Abbott R, Abbott T, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, Adya V B, et al. 2017 Phys. Rev. Lett. 119 161101

    [65]

    Biscans S, Gras S, Blair C, Driggers J, Evans M, Fritschel P, Hardwick T, Mansell G 2019 Phys. Rev. D 100 122003

    [66]

    Mow-Lowry C M, Martynov D 2019 Class. Quantum Grav. 36 245006

    [67]

    Aasi J, Abadie J, Abbott B, Abbott R, Abbott T, Abernathy M, Adams C, Adams T, Addesso P, Adhikari R, et al. 2013 Nat. Photonics 7 613

    [68]

    Zhao Y, Aritomi N, Capocasa E, Leonardi M, Eisenmann M, Guo Y, Polini E, Tomura A, Arai K, Aso Y, et al. 2020 Phys. Rev. Lett. 124 171101

    [69]

    Dwyer S E 2013 Quantum noise reduction using squeezed states in LIGO. Ph.D. Dissertation, (Cambridge, MA: Massachusetts Institute of Technology)

    [70]

    Billingsley G, Yamamoto H, Zhang L 2017 ASPE 66 78

    [71]

    Brooks A F, Vajente G, Yamamoto H, Abbott R, Adams C, Adhikari R X, Ananyeva A, Appert S, Arai K, Areeda J S, et al. 2021 Appl. Opt. 60 4047

    [72]

    Abbott R, Abbott T, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R, Adya V, Affeldt C, et al. 2021 Phys. Rev. X 11 021053

    [73]

    Dolesi R, Hueller M, Nicolodi D, Tombolato D, Vitale S, Wass P, Weber W J, Evans M, Fritschel P, Weiss R, et al. 2011 Phys. Rev. D 84 063007

    [74]

    Mitrofanov V, Prokhorov L, Tokmakov K, Willems P 2004 Class. Quantum Grav. 21 S1083

    [75]

    Abbott R, Abbott T, Acernese F, Ackley K, Adams C, Adhikari N, Adhikari R, Adya V, Affeldt C, Agarwal D, et al. 2023 Phys. Rev. X 13 041039

    [76]

    Capote E, Jia W, Aritomi N, Nakano M, Xu V, Abbott R, Abouelfettouh I, Adhikari R, Ananyeva A, Appert S, et al. 2025 Phys. Rev. D 111 062002

    [77]

    Buikema A, Cahillane C, Mansell G, Blair C, Abbott R, Adams C, Adhikari R, Ananyeva A, Appert S, Arai K, et al. 2020 Phys. Rev. D 102 062003

    [78]

    Soni S, Berger B, Davis D, Di Renzo F, Effler A, Ferreira T, Glanzer J, Goetz E, González G, Helmling-Cornell A, et al. 2025 Class. Quantum Grav. 42 085016

    [79]

    Jia W, Xu V, Kuns K, Nakano M, Barsotti L, Evans M, Mavalvala N, Collaboration† L S, Abbott R, Abouelfettouh I, et al. 2024 Science 385 1318

    [80]

    Collaboration L S 2022 LIGO-Document: LIGO-T2200287-v2

    [81]

    Abbott B, Abbott R, Adhikari R, Ajith P, Allen B, Allen G, Amin R, Anderson S, Anderson W, Arain M, et al. 2009 Rep. Prog. Phys. 72 076901

    [82]

    Virgo Collaboration 2024. https://www.virgo-gw.eu

    [83]

    Acernese F, Alshourbagy M, Amico P, Antonucci F, Aoudia S, Arun K, Astone P, Avino S, Baggio L, Ballardin G, et al. 2008 Class. Quantum Grav. 25 184001

    [84]

    Accadia T, Swinkels B, forthe VIRGO Collaboration, et al. 2010 Class. Quantum Grav. 27 084002

    [85]

    Braccini S, Barsotti L, Bradaschia C, Cella G, Di Virgilio A, Ferrante I, Fidecaro F, Fiori I, Frasconi F, Gennai A, et al. 2005 Astropart. Phys. 23 557

    [86]

    Lorenzini M, on behalf ofthe Virgo Collaboration, et al. 2010 Class. Quantum Grav. 27 084021

    [87]

    Bersanetti D, Patricelli B, Piccinni O J, Piergiovanni F, Salemi F, Sequino V 2021 Universe 7 322

    [88]

    Di Pace S, Collaboration V, et al. 2021 Phys. Scr. 96 124054

    [89]

    Naticchioni L, Collaboration V, et al. 2018 In Journal of Physics: Conference Series, vol. 957 (IOP Publishing), p 012002

    [90]

    Rocchi A, Coccia E, Fafone V, Malvezzi V, Minenkov Y, Sperandio L 2012 In Journal of Physics: Conference Series, vol. 363 (IOP Publishing), p 012016

    [91]

    De Rossi C, Brooks J, Casanueva Diaz J, Chiummo A, Genin E, Gosselin M, Leroy N, Mantovani M, Montanari B, Nocera F, Pillant G 2020 Galaxies 8 87

    [92]

    Collette C, Boudart V, Cudell J R, Collaboration L S, Collaboration V, et al. 2023 In yes (Institute of Physics)

    [93]

    Garufi F 2024 Ground-based and Airborne Telescopes X 13094 573

    [94]

    Acernese F, Agathos M, Ain A, Albanesi S, Alléné C, Allocca A, Amato A, Andia M, Andrade T, Andres N, et al. 2023 In J. Phys.: Conf. Ser., vol. 2429 (IOP Publishing), p 012040

    [95]

    KAGRA Collaboration 2024. https://gwcenter.icrr.u-tokyo.ac.jp

    [96]

    Wang H, Aso Y, Leonardi M, Eisenmann M, Hirose E, Billingsley G, Kokeyama K, Ushiba T, Tamaki M, Michimura Y 2024 Phys. Rev. D 110 082007

    [97]

    Michimura Y, Wang H, Salces-Carcoba F, Wipf C, Brooks A, Arai K, Adhikari R X 2024 Phys. Rev. D 109 022009

    [98]

    Y I, Collaboration K 2024 In 38th International Cosmic Ray Conference. p 1555

    [99]

    Akiyama Y, Akutsu T, Ando M, Arai K, Arai Y, Araki S, Araya A, Aritomi N, Asada H, Aso Y, et al. 2019 Class. Quantum Grav. 36 095015

    [100]

    Abac A, Abbott R, Abouelfettouh I, Acernese F, Ackley K, Adhicary S, Adhikari N, Adhikari R, Adkins V, Agarwal D, et al. 2024 arXiv:2410.16565[astro-ph.HE]

    [101]

    Akutsu T, Ando M, Aoumi M, Araya A, Aso Y, Baiotti L, Bajpai R, Cannon K, Chen A Y, Chen D, et al. 2025 arXiv:2508.03392[astro-ph.HE]

    [102]

    Adhikari R X, Arai K, Brooks A, Wipf C, Aguiar O, Altin P, Barr B, Barsotti L, Bassiri R, Bell A, et al. 2020 Class. Quantum Grav. 37 165003

    [103]

    Adhikari R, Arai K, Brooks A, Salces-Carcoba F, Wipf C 2023 LIGO-Document:LIGO-G1601461

    [104]

    Team L V 2016 LIGO-Document: LIGO-G1602258-v1

    [105]

    Adhikari R X, Brooks A 2024 LIGO-Document: LIGO-T1400226

    [106]

    Hall E D 2022 Galaxies 10 90

    [107]

    Reitze D, Adhikari R X, Ballmer S, Barish B, Barsotti L, Billingsley G, Brown D A, Chen Y, Coyne D, Eisenstein R, et al. 2019 arXiv:1907.04833

    [108]

    Evans M, Adhikari R X, Afle C, Ballmer S W, Biscoveanu S, Borhanian S, Brown D A, Chen Y, Eisenstein R, Gruson A, et al. 2021 arXiv:2109.09882

    [109]

    Branchesi M, Maggiore M, Alonso D, Badger C, Banerjee B, Beirnaert F, Belgacem E, Bhagwat S, Boileau G, Borhanian S, et al. 2023 JCAP 2023 068

    [110]

    Committee E S 2020 ET-Document: Design Report Update 2020 Technical Report

    [111]

    Brown D D, Miao H, Collins C, Mow-Lowry C, Töyrä D, Freise A 2017 Phys. Rev. D 96 062003

  • [1] 李响, 王嘉伟, 李番, 黄天时, 党昊, 赵得胜, 田龙, 史少平, 李卫, 尹王保, 郑耀辉. 面向地基引力波探测频段的超低噪声激光强度噪声评估系统. 物理学报, doi: 10.7498/aps.74.20241319
    [2] 阮远东, 章志昊, 贾茳勰, 顾煜宁, 张善端, 崔旭高, 洪葳, 白彦峥, 田朋飞. 空间引力波探测中电荷管理系统的紫外光源应用. 物理学报, doi: 10.7498/aps.73.20241115
    [3] 郭禧庆, 周静, 王晨曦, 秦琛, 郭成哲, 李刚, 张鹏飞, 张天才. 地基引力波探测激光干涉仪的真空残余气体噪声分析. 物理学报, doi: 10.7498/aps.73.20231462
    [4] 王嘉伟, 李健博, 李番, 郑立昂, 高子超, 安炳南, 马正磊, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的程控低噪声高精度电压基准源. 物理学报, doi: 10.7498/aps.72.20222119
    [5] 王在渊, 王洁浩, 李宇航, 柳强. 面向空间引力波探测的毫赫兹频段低强度噪声单频激光器. 物理学报, doi: 10.7498/aps.72.20222127
    [6] 李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的激光强度噪声评估系统. 物理学报, doi: 10.7498/aps.71.20220841
    [7] 李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉. 面向第三代地基引力波探测的激光源需求分析. 物理学报, doi: 10.7498/aps.71.20220552
    [8] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, doi: 10.7498/aps.70.20210747
    [9] 唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜. 地基气辉成像干涉仪探测高层大气风场的定标研究. 物理学报, doi: 10.7498/aps.66.130601
    [10] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究. 物理学报, doi: 10.7498/aps.61.135201
    [11] 胡华, 伍康, 申磊, 李刚, 王力军. 新型高精度绝对重力仪. 物理学报, doi: 10.7498/aps.61.099101
    [12] 王玉诏, 伍歆, 钟双英. 旋转致密双星的引力波特征. 物理学报, doi: 10.7498/aps.61.160401
    [13] 钟双英, 刘崧. 旋转致密双星后牛顿轨道的引力波研究. 物理学报, doi: 10.7498/aps.61.120401
    [14] 王峰, 彭晓世, 刘慎业, 蒋小华, 丁永坤. 利用成像型速度干涉仪进行聚苯乙烯材料中冲击波调速的实验研究. 物理学报, doi: 10.7498/aps.60.085203
    [15] 青心. 对-谐条件下不存在引力辐射和引力波的研究. 物理学报, doi: 10.7498/aps.49.194
    [16] 郑庆璋, 唐孟希, 胡恩科. 论引力波探测器方位与引力波源方位间的关系. 物理学报, doi: 10.7498/aps.39.685
    [17] 陶福臻. 引力孤立波. 物理学报, doi: 10.7498/aps.36.350
    [18] 徐步新, 秦荣先. 集中质量音叉式引力波天线与Vela星引力辐射探测的探讨. 物理学报, doi: 10.7498/aps.31.1097
    [19] 郑庆障, 崔世治. 扭摆——探测低频引力波的一种可能的天线. 物理学报, doi: 10.7498/aps.29.1204
    [20] 陆启铿, 刘煜奋, 邹振隆, 郭汉英. 标量-张量引力波. 物理学报, doi: 10.7498/aps.23.15
计量
  • 文章访问数:  148
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-02

/

返回文章
返回