搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向空间引力波探测的毫赫兹频段低强度噪声单频激光器

王在渊 王洁浩 李宇航 柳强

引用本文:
Citation:

面向空间引力波探测的毫赫兹频段低强度噪声单频激光器

王在渊, 王洁浩, 李宇航, 柳强

Millihertz band low-intensity-noise single-frequency laser for space gravitational wave detection

Wang Zai-Yuan, Wang Jie-Hao, Li Yu-Hang, Liu Qiang
PDF
HTML
导出引用
  • 低噪声单频激光器是空间引力波探测系统中的核心器件, 其噪声性能直接影响空间引力波探测器的灵敏度. 本文报道了一种面向空间引力波探测的低噪声单频激光器, 利用全保偏光纤结构的功率放大器对低功率、窄线宽、低噪声的非平面环形振荡器输出激光进行放大. 为降低激光的强度噪声, 比较了不同泵浦源的输出特性, 为光纤放大器选用波长锁定的泵浦源, 降低泵浦光波长随温度漂移对输出功率的影响, 利用光电负反馈控制技术抑制输出激光的强度噪声, 结合主动精确控温技术抑制关键器件的热噪声, 实现了毫赫兹频段强度噪声的抑制. 利用自主搭建的4通道相对强度噪声测量系统, 测得反馈控制后的激光器相对强度噪声在1 mHz—1 Hz频段内低于–60 dBc/Hz, 在1 mHz和1 Hz处分别为–63.4 dBc/Hz和–105.8 dBc/Hz. 研究结果表明, 通过放大器泵浦电流的反馈控制和关键器件的温度控制可以有效地抑制激光器在毫赫兹频段的强度噪声, 为进一步提高低频段强度噪声性能奠定基础.
    A low-noise single-frequency laser is a key component of the space-based gravitational wave detector, and the intensity noise of the laser directly affects the sensitivity of the space-based GW detector. In this work, we report a low-noise single-frequency laser designed for space-based gravitational wave detector. The laser is based on a master oscillator power amplifier (MOPA), which is designed to possess a low-power, narrow-linewidth seed laser acting as master oscillator (MO) and an all polarization-maintaining fiber amplifier acting as power amplifier (PA). The amplifier that uses a robust mechanical design consists of an Yb-doped double-clad fiber forward pumped by wavelength-locked 976 nm pump laser diode (LD) to achieve 2.13 W of output power and 70 dB of signal-noise ratio (SNR). To suppress the relative intensity noise (RIN) in a millhertz regime (1 mHz–1 Hz), we characterize the power stabilization of a pump diode laser based on a proportional-integral-derivative (PID) feedback control loop where an in-loop photodetector is used. The power fluctuation can be converted into the fluctuation of the current signal by the photodiode, the current signal is converted into the voltage signal and amplified by a transimpedance circuit. Then, the voltage signal is compared with the voltage reference signal, and the error signal is achieved to adjust real-timely the drive current of the pump laser diode. This is a good way to significantly suppress the RIN of a laser at low frequencies, but the measured RIN below 4 mHz is still higher than –60 dBc/Hz. In order to further suppress the RIN to lower than 4 mHz, an active precise temperature control technology is used to suppress the thermal noise from pump LD and fiber coupler. To assess the RIN milliertz regime, we design an RIN measurement system consisting of a high-precision signal acquisition card (24 bit) and a computer program based on LabVIEW. The measurement range of the system is 2 μHz–102.4 kHz and the frequency resolution up to 2 µHz, much better than the counterparts of commercial instruments. By stabilizing the fiber amplifier pump LD current and the temperature of pump LD and the temperature of fiber coupler, the out-of-loop RINs are measured to be –63.4 dBc/Hz@1 mHz and –105.8 dBc/Hz@1 Hz , and in a milliertz regime of 1 mHz–1 Hz, the RIN is below –60 dBc/Hz. The results show that the feedback control of the fiber amplifier pump LD current and the temperature control of the key devices can effectively suppress the RIN in the millihertz frequency band, which lays a foundation for further improving the intensity noise performance in the low frequency band.
      通信作者: 李宇航, liyuhang@tsinghua.edu.cn ; 柳强, qiangliu@tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFC2200403)资助的课题.
      Corresponding author: Li Yu-Hang, liyuhang@tsinghua.edu.cn ; Liu Qiang, qiangliu@tsinghua.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFC2200403).
    [1]

    Numata K, Yu A, Jiao H, Merritt S, Micalizzi F, Fahey M, Camp J, Krainak M 2019 Proceedings of SPIE: Solid State Lasers XXIII: Technology and Devices 10896 108961HGoogle Scholar

    [2]

    罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar

    Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech. 43 415Google Scholar

    [3]

    Peterseim M, Brozek O S, Danzmann K, Freitag I, Rottengatter P, Tünnermann A, Welling H 1998 AIP Conf. Proc. 456 148Google Scholar

    [4]

    O’Brien S, Welch D, Parke R, Mehuys D, Dzurko K, Lang R, Waarts R, Scifres D 1993 IEEE J. Quantum Electron. 29 2052Google Scholar

    [5]

    Yang C S, Xu S H, Chen D, Zhang Y F, Zhao Q L, Li C, Zhou K J, Feng Z M, Gan J L, Yang Z M 2016 J. Opt. 18 055801Google Scholar

    [6]

    Kane T 1990 IEEE Photonics Technol. Lett. 2 244Google Scholar

    [7]

    李灿 2015 博士学位论文 (广州: 华南理工大学)

    Li C 2015 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)

    [8]

    Tröbs M 2005 Ph. D. Dissertation (Hannover: Leibniz University Hannover)

    [9]

    Nicklaus K, Herding M, Wang X, Beller N, Fitzau O, Giesberts M, Herper M, Barwood G P, Williams R A, Gill P, Koegel H, Webster A, Gohlke M 2014 Proceedings of the International Conference on Space Optics 10563 105632TGoogle Scholar

    [10]

    Dahl K, Cebeci P, Fitzau O, Giesberts M, Greve C, Krutzik M, Peters A, Pyka S, Sanjuan J, Schiemangk M, Schuldt T, Voss K, Wicht A 2018 Proc. SPIE 11180 111800CGoogle Scholar

    [11]

    Milyukov V 2020 Astron. Rep. 64 1067Google Scholar

    [12]

    Gong Y G, Jun Luo, Wang B 2021 Nat. Astron. 5 881Google Scholar

    [13]

    Luo Z R, Guo Z K, Jin G, Wu Y L, Hu W R 2020 Results Phys. 16 102918Google Scholar

    [14]

    Luo Z R, Wang Y, Wu Y L, Hu W R, Jin G 2021 Prog. Theor. Exp. Phys. 2021 05A108Google Scholar

    [15]

    Foster S B, Tikhomirov A E. 2010 IEEE J. Quantum Electron. 46 734Google Scholar

    [16]

    Guiraud G, Traynor N, Santarelli G 2016 Opt. Lett. 41 4040Google Scholar

    [17]

    杨中民, 徐善辉 2017 单频光纤激光器(北京: 科学出版社) 第59页

    Yang Z M, Xu S H 2017 Single-frequency Fiber Laser (Beijing: Science Press) p59 (in Chinese)

    [18]

    Hui R Q, O’Sullivan M 2009 Fiber Optic Test & Measurement (California: Elsevier Academic Press) pp263–264

    [19]

    李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 17 209501Google Scholar

    Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y H 2022 Acta Phys. Sin. 17 209501Google Scholar

    [20]

    Willke B 2010 Laser Photonics Rev. 4 780Google Scholar

    [21]

    Tröbs M, Heinzel G 2006 Measurement 39 120Google Scholar

    [22]

    Möller L 1998 IEEE J. Quantum Electron. 34 1554Google Scholar

    [23]

    Xue M Y, Gao C X, Niu L Q, Zhu A L, Sun C D 2020 Appl. Opt. 59 2610Google Scholar

  • 图 1  低噪声单频激光器的结构示意图

    Fig. 1.  Schematic of the low-noise single-frequency laser system.

    图 2  不同温度下泵浦LD的光谱 (a) 不锁波长LD的光谱; (b) 锁波长LD的光谱

    Fig. 2.  Optical spectra of 976 nm pump laser diodes at different temperature: (a) Wavelength-unlocked; (b) wavelength-locked.

    图 3  RIN测量示意图

    Fig. 3.  Experimental setup of RIN measurement.

    图 4  0.1 mHz—10 Hz频段内的RIN测量结果

    Fig. 4.  Measured RIN in the frequency of 0.1 mHz–10 Hz.

    图 5  放大器内部的红外热像图

    Fig. 5.  Infrared thermal image inside the fiber amplifier.

    图 6  不同温度下的外环RIN测量结果

    Fig. 6.  RIN measurement results of the out-of-loop at the different temperatures.

    图 7  2.13 W 输出时的功率稳定性 (a)、放大前后的光谱(b)和放大器的附加线宽(c)

    Fig. 7.  Power stability (a), optical spectra (b) and additional linewidth (c) at 2.13 W output, respectively.

  • [1]

    Numata K, Yu A, Jiao H, Merritt S, Micalizzi F, Fahey M, Camp J, Krainak M 2019 Proceedings of SPIE: Solid State Lasers XXIII: Technology and Devices 10896 108961HGoogle Scholar

    [2]

    罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar

    Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech. 43 415Google Scholar

    [3]

    Peterseim M, Brozek O S, Danzmann K, Freitag I, Rottengatter P, Tünnermann A, Welling H 1998 AIP Conf. Proc. 456 148Google Scholar

    [4]

    O’Brien S, Welch D, Parke R, Mehuys D, Dzurko K, Lang R, Waarts R, Scifres D 1993 IEEE J. Quantum Electron. 29 2052Google Scholar

    [5]

    Yang C S, Xu S H, Chen D, Zhang Y F, Zhao Q L, Li C, Zhou K J, Feng Z M, Gan J L, Yang Z M 2016 J. Opt. 18 055801Google Scholar

    [6]

    Kane T 1990 IEEE Photonics Technol. Lett. 2 244Google Scholar

    [7]

    李灿 2015 博士学位论文 (广州: 华南理工大学)

    Li C 2015 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)

    [8]

    Tröbs M 2005 Ph. D. Dissertation (Hannover: Leibniz University Hannover)

    [9]

    Nicklaus K, Herding M, Wang X, Beller N, Fitzau O, Giesberts M, Herper M, Barwood G P, Williams R A, Gill P, Koegel H, Webster A, Gohlke M 2014 Proceedings of the International Conference on Space Optics 10563 105632TGoogle Scholar

    [10]

    Dahl K, Cebeci P, Fitzau O, Giesberts M, Greve C, Krutzik M, Peters A, Pyka S, Sanjuan J, Schiemangk M, Schuldt T, Voss K, Wicht A 2018 Proc. SPIE 11180 111800CGoogle Scholar

    [11]

    Milyukov V 2020 Astron. Rep. 64 1067Google Scholar

    [12]

    Gong Y G, Jun Luo, Wang B 2021 Nat. Astron. 5 881Google Scholar

    [13]

    Luo Z R, Guo Z K, Jin G, Wu Y L, Hu W R 2020 Results Phys. 16 102918Google Scholar

    [14]

    Luo Z R, Wang Y, Wu Y L, Hu W R, Jin G 2021 Prog. Theor. Exp. Phys. 2021 05A108Google Scholar

    [15]

    Foster S B, Tikhomirov A E. 2010 IEEE J. Quantum Electron. 46 734Google Scholar

    [16]

    Guiraud G, Traynor N, Santarelli G 2016 Opt. Lett. 41 4040Google Scholar

    [17]

    杨中民, 徐善辉 2017 单频光纤激光器(北京: 科学出版社) 第59页

    Yang Z M, Xu S H 2017 Single-frequency Fiber Laser (Beijing: Science Press) p59 (in Chinese)

    [18]

    Hui R Q, O’Sullivan M 2009 Fiber Optic Test & Measurement (California: Elsevier Academic Press) pp263–264

    [19]

    李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 17 209501Google Scholar

    Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y H 2022 Acta Phys. Sin. 17 209501Google Scholar

    [20]

    Willke B 2010 Laser Photonics Rev. 4 780Google Scholar

    [21]

    Tröbs M, Heinzel G 2006 Measurement 39 120Google Scholar

    [22]

    Möller L 1998 IEEE J. Quantum Electron. 34 1554Google Scholar

    [23]

    Xue M Y, Gao C X, Niu L Q, Zhu A L, Sun C D 2020 Appl. Opt. 59 2610Google Scholar

  • [1] 李响, 王嘉伟, 李番, 黄天时, 党昊, 赵得胜, 田龙, 史少平, 李卫, 尹王保, 郑耀辉. 面向地基引力波探测频段的超低噪声激光强度噪声评估系统研究. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241319
    [2] 吴航, 陈燎, 李帅, 杜禺璠, 张驰, 张新亮. 百兆赫兹重频的轨道角动量模式飞秒光纤激光器. 物理学报, 2024, 73(1): 014204. doi: 10.7498/aps.73.20231085
    [3] 张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴. 增益开关线偏振单频脉冲光纤激光器. 物理学报, 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [4] 周沛, 张仁恒, 朱尖, 李念强. 基于双路光电反馈下光注入半导体激光器的高性能线性调频信号产生. 物理学报, 2022, 71(21): 214204. doi: 10.7498/aps.71.20221308
    [5] 聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收. 基于光学参量振荡器的可调谐红外激光的强度噪声特性. 物理学报, 2020, 69(9): 094205. doi: 10.7498/aps.69.20191952
    [6] 杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣. 1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究. 物理学报, 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [7] 朱永浩, 黎华, 万文坚, 周涛, 曹俊诚. 三阶分布反馈太赫兹量子级联激光器的远场分布特性. 物理学报, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [8] 杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼. 反馈强度对外腔反馈半导体激光器混沌熵源生成的随机数序列性能的影响. 物理学报, 2015, 64(8): 084204. doi: 10.7498/aps.64.084204
    [9] 陈再高, 王建国, 王玥, 张殿辉, 乔海亮. 欧姆损耗对太赫兹频段同轴表面波振荡器的影响. 物理学报, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [10] 邰朝阳, 侯飞雁, 王盟盟, 权润爱, 刘涛, 张首刚, 董瑞芳. 光纤激光经过模清洁器后的强度噪声分析. 物理学报, 2014, 63(19): 194203. doi: 10.7498/aps.63.194203
    [11] 王小发. 光电负反馈下垂直腔表面发射激光器偏振开关特性研究. 物理学报, 2013, 62(10): 104208. doi: 10.7498/aps.62.104208
    [12] 黄雪兵, 夏光琼, 吴正茂. 时变电流注入下光电负反馈垂直腔表面发射激光器的偏振双稳特性. 物理学报, 2010, 59(5): 3066-3069. doi: 10.7498/aps.59.3066
    [13] 樊利, 夏光琼, 吴正茂. 基于光电反馈的激光混沌并联同步系统研究. 物理学报, 2009, 58(2): 989-994. doi: 10.7498/aps.58.989
    [14] 王小发, 夏光琼, 吴正茂. 光电负反馈下单向耦合注入垂直腔表面发射激光器的混沌同步特性研究. 物理学报, 2009, 58(7): 4669-4674. doi: 10.7498/aps.58.4669
    [15] 颜森林. 半导体激光器混沌光电延时负反馈控制方法研究. 物理学报, 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [16] 廖健飞, 夏光琼, 吴加贵, 许 黎, 吴正茂. 基于光电负反馈的激光混沌串联同步系统研究. 物理学报, 2007, 56(11): 6301-6306. doi: 10.7498/aps.56.6301
    [17] 董瑞芳, 张俊香, 张天才, 张靖, 谢常德, 彭堃墀. 通过λ/2波片外腔同位相弱反馈实现激光二极管激光的强度噪声压缩. 物理学报, 2001, 50(3): 462-466. doi: 10.7498/aps.50.462
    [18] 张天才, 李廷鱼, D.van Effenterre, 谢常德, 彭墀. 自锁定半导体激光器中强度压缩及位相噪声的减小. 物理学报, 1998, 47(9): 1498-1503. doi: 10.7498/aps.47.1498
    [19] 刘甲壬, 赵波, 王育竹. 负反馈提高高阻恒流源驱动的LED的输出光场噪声压缩量. 物理学报, 1994, 43(10): 1598-1604. doi: 10.7498/aps.43.1598
    [20] 张建平, 李玲, 叶培大. 电负反馈半导体激光器半经典理论. 物理学报, 1989, 38(9): 1436-1442. doi: 10.7498/aps.38.1436
计量
  • 文章访问数:  3936
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2022-12-07
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-03-05

/

返回文章
返回