-
报道了一台线偏振单频脉冲光纤激光器. 采用全保偏环形腔结构搭建全光纤振荡器, 在腔内熔接一段未抽运的保偏掺镱光纤作为饱和吸收体, 产生超窄带的动态光栅进行滤波选模, 实现了激光器的单频输出. 利用976 nm半导体激光器作为抽运源, 产生脉冲加连续的混合抽运激光, 实现了重频10—90 kHz、脉宽1—8 μs的长脉冲输出. 实验研究了抽运功率和重复频率等参数对输出激光的时域、频域和功率特性的影响. 实验发现输出激光的频域特性在一定功率范围内存在光学双稳态现象, 分析了激光功率特性对动态光栅选模机制的影响. 通过参数优化, 最终实现了中心波长1064 nm、线宽约23.5 MHz、重频10—90 kHz、脉宽4—8 μs、偏振消光比约29 dB的单频脉冲激光输出.Single-frequency pulsed fiber lasers have aroused intense interest due to their excellent performances in terms of good coherence, compact structure and good beam quality, which have been widely used in different areas, such as coherent LIDAR, nonlinear frequency conversion, and remote sensing. In this paper, a linearly polarized single-frequency pulsed fiber laser is reported. The narrow linewidth all-fiber oscillator is built by using an all-polarization-maintaining ring cavity structure. A section of unpumped polarization-maintaining ytterbium doped fiber is fused in the cavity as a saturated absorber to produce ultra-narrow bandwidth dynamic grating, which can be used for longitudinal mode selection. Thus, the laser can realize single-frequency operation. A 976-nm semiconductor laser is used as a pump source to generate a hybrid pump laser, which contains both pulsed component and continuous component. As a result, a long-pulse laser is achieved with a repetition rate of 10–90 kHz and a pulse duration of 1–8 μs. At the same time, the effects of pump power and repetition rate on the time domain, the frequency domain and the power characteristics of the output laser are investigated. It is found that there is an optical bistability in the frequency domain characteristic of the output laser within a certain power range. And the influence of the laser power characteristic on the longitudinal mode selection mechanism of dynamic grating is analyzed. Finally, through parameter optimization, single-frequency pulsed fiber laser is achieved with a center wavelength of 1064 nm, a linewidth of about 23.5 MHz, a repetition rate of 10–90 kHz, a pulse duration of 4–8 μs, and a polarization extinction ratio of about 29 dB.
-
Keywords:
- fiber laser /
- gain-switched /
- pulsed laser /
- single-frequency laser
[1] Mo C, Chenyu W, Jianfei W, Hong L, Zhou M 2017 Optics Express 25 19216Google Scholar
[2] Wan Y, Wen J, Jiang C, Tang F, Wen J, Huang S, Pang F, Wang T 2021 Photon. Res. 9 649Google Scholar
[3] Guan X, Yang C, Tian Q, Wei L, Zhao Q, Tang G, Qian G, Qian Q, Yang Z, Xu S 2018 Optics Express 26 6817Google Scholar
[4] Wang K, Wen Z, Chen H, Lu B, Bai J 2021 Optics Lett. 46 404Google Scholar
[5] Shi W, Leigh M, Zong J, Jiang S 2007 Optics Lett. 32 949Google Scholar
[6] Liu Y, Liu J, Chen W 2011 Chin. Optics Lett. 9 18Google Scholar
[7] Shi W, Petersen E, Moor N, Chavez-Pirson A, Peyghambarian N 2011 Conference on Nanophotonics and Macrophotonics for Space Environments V 2011
[8] Su R, Zhou P, Xiao H, Wang X, Xu X 2012 Appl. Optics 51 3655Google Scholar
[9] He J, Lin D, Xu L, Beresna M, Zervas M N, Alam S-u, Brambilla G 2018 Optics Express 26 6554Google Scholar
[10] Lee W, Geng J, Jiang S, Yu A W 2018 Optics Lett. 43 2264Google Scholar
[11] Shi C, Tian H, Sheng Q, Shi W, Fang Q, Sun S, Zhang J, Deng X, Yao J 2021 Results in Phys. 28 104594Google Scholar
[12] Shi W, Petersen E B, Moor N, Chavez-Pirson A, Peyghambarian N 2011 CLEO: 2011-Laser Applications to Photonic Applications Baltimore, Maryland, May 1, 2011 pCThDD6
[13] Zhang Y, Wang S, Lin W, Mo S, Zhao Q, Yang C, Feng Z, Deng H, Peng M, Yang Z, Xu S 2017 Appl. Phys. Express 10 052502Google Scholar
[14] Li W, Zou J, Huang Y, Wang K, Du T, Jiang S, Luo Z 2018 Photon. Res. 6 35Google Scholar
[15] Zhao Q, Wu Z, Zhang Z, Lin W, Li C, Guan X, Tan T, Yang C, Cheng H, Gan J, Feng Z, Peng M, Yang Z, Xu S 2018 Optics Express 26 17000Google Scholar
[16] Zhou R, Shi W, Petersen E, Chavez-Pirson A, Stephen M, Peyghambarian N 2012 J. Lightwave Technol. 30 2589Google Scholar
[17] Li W, Liu H, Zhang J, Long H, Feng S, Mao Q 2016 Applied Optics 55 4584Google Scholar
[18] Zhang Y, Yang C, Li C, Feng Z, Xu S, Deng H, Yang Z 2016 Optics Express 24 3162Google Scholar
[19] Li W, Liu H, Zhang J, Yao B, Feng S, Wei L, Mao Q 2017 IEEE Photon. J. 9 1Google Scholar
[20] Wang W, Qi H, Song Z, Guo J, Ni J, Wang C, Peng G 2020 Opt. Commun. 467 125747Google Scholar
[21] Geng J, Wang Q, Luo T, Case B, Jiang S, Amzajerdian F, Yu J 2012 Optics Lett. 37 3795Google Scholar
[22] Hou Y, Zhang Q, Qi S, Feng X, Wang P 2016 Optics Express 24 28761Google Scholar
[23] Poozesh R, Madanipour K, Parvin P 2019 Optics Lett. 44 122Google Scholar
[24] Fang S, Zhang Z, Yang C, Lin W, Cen X, Zhao Q, Feng Z, Yang Z, Xu S 2022 IEEE Photon. Technol. Lett. 34 255Google Scholar
[25] Fei W, Deyuan S, Hao C, Dianyuan F, Qisheng L 2011 Optical Rev. 18 360Google Scholar
[26] 栾昆鹏, 沈炎龙, 陶蒙蒙, 朱峰, 黄超, 谌鸿伟, 易爱平 2019 光学学报 39 9Google Scholar
Luan K P, Shen Y L, Tao M M, Zhu F, Huang C, Chen H W, Yi A P 2019 Acta Optica Sin. 39 9Google Scholar
[27] Larsen C, Hansen K P, Mattsson K E, Bang O 2014 Optics Express 22 1490Google Scholar
[28] Li Y, Huang L, Gao L, Lan T, Cao Y, Ikechukwu I P, Shi L, Liu Y, Li F, Zhu T 2018 Optics Express 26 26896Google Scholar
[29] 白燕, 延凤平, 冯亭, 韩文国, 张鲁娜, 程丹, 白卓娅, 温晓东 2019 中国激光 46 64Google Scholar
Bai Y, Yan F P, Feng T, Han W G, Zhang L N, Cheng D, Bai Z Y, Wen X D 2019 Chin. J. Lasers 46 64Google Scholar
[30] Zhang J, Sheng Q, Zhang L, Shi C, Sun S, Bai X, Shi W, Yao J 2021 Optics Express 29 21409Google Scholar
[31] Stepanov S, Fotiadi A A, Mégret P 2007 Optics Express 15 8832Google Scholar
[32] Pal D, Paul A, Chowdhury S D, Pal M, Sen R, Pal A 2018 Appl. Optics 57 3546Google Scholar
[33] Yin T, Song Y, Jiang X, Chen F, He S 2019 Optics Express 27 15794Google Scholar
-
图 2 脉冲时域特性随抽运激光特性的变化情况 (a) 抽运平均功率53 mW、抽运脉宽3 μs; (b) 抽运平均功率137 mW、抽运脉宽3 μs; (c) 抽运平均功率154 mW、抽运脉宽3 μs; (d) 抽运平均功率137 mW、抽运脉宽5 μs
Fig. 2. Pulse time domain characteristics with different pump characteristics, the average pump power and pump pulse duration are: (a) 53 mW, 3 μs; (b) 137 mW, 3 μs; (c) 154 mW, 3 μs; (d) 137 mW, 5 μs.
图 4 激光器的典型频域特性 (a) 不熔接PM-YDF2时的纵模特性; (b) 熔接1 m长PM-YDF2时的纵模特性; (c) 单纵模线宽; (d) 光谱特性
Fig. 4. Typical frequency domain characteristics of laser: (a) longitudinal mode characteristic without PM-YDF2; (b) longitudinal mode characteristic with 1-m-long PM-YDF2; (c) linewidth of single-longitudinal-mode; (d) optical spectrum characteristic.
-
[1] Mo C, Chenyu W, Jianfei W, Hong L, Zhou M 2017 Optics Express 25 19216Google Scholar
[2] Wan Y, Wen J, Jiang C, Tang F, Wen J, Huang S, Pang F, Wang T 2021 Photon. Res. 9 649Google Scholar
[3] Guan X, Yang C, Tian Q, Wei L, Zhao Q, Tang G, Qian G, Qian Q, Yang Z, Xu S 2018 Optics Express 26 6817Google Scholar
[4] Wang K, Wen Z, Chen H, Lu B, Bai J 2021 Optics Lett. 46 404Google Scholar
[5] Shi W, Leigh M, Zong J, Jiang S 2007 Optics Lett. 32 949Google Scholar
[6] Liu Y, Liu J, Chen W 2011 Chin. Optics Lett. 9 18Google Scholar
[7] Shi W, Petersen E, Moor N, Chavez-Pirson A, Peyghambarian N 2011 Conference on Nanophotonics and Macrophotonics for Space Environments V 2011
[8] Su R, Zhou P, Xiao H, Wang X, Xu X 2012 Appl. Optics 51 3655Google Scholar
[9] He J, Lin D, Xu L, Beresna M, Zervas M N, Alam S-u, Brambilla G 2018 Optics Express 26 6554Google Scholar
[10] Lee W, Geng J, Jiang S, Yu A W 2018 Optics Lett. 43 2264Google Scholar
[11] Shi C, Tian H, Sheng Q, Shi W, Fang Q, Sun S, Zhang J, Deng X, Yao J 2021 Results in Phys. 28 104594Google Scholar
[12] Shi W, Petersen E B, Moor N, Chavez-Pirson A, Peyghambarian N 2011 CLEO: 2011-Laser Applications to Photonic Applications Baltimore, Maryland, May 1, 2011 pCThDD6
[13] Zhang Y, Wang S, Lin W, Mo S, Zhao Q, Yang C, Feng Z, Deng H, Peng M, Yang Z, Xu S 2017 Appl. Phys. Express 10 052502Google Scholar
[14] Li W, Zou J, Huang Y, Wang K, Du T, Jiang S, Luo Z 2018 Photon. Res. 6 35Google Scholar
[15] Zhao Q, Wu Z, Zhang Z, Lin W, Li C, Guan X, Tan T, Yang C, Cheng H, Gan J, Feng Z, Peng M, Yang Z, Xu S 2018 Optics Express 26 17000Google Scholar
[16] Zhou R, Shi W, Petersen E, Chavez-Pirson A, Stephen M, Peyghambarian N 2012 J. Lightwave Technol. 30 2589Google Scholar
[17] Li W, Liu H, Zhang J, Long H, Feng S, Mao Q 2016 Applied Optics 55 4584Google Scholar
[18] Zhang Y, Yang C, Li C, Feng Z, Xu S, Deng H, Yang Z 2016 Optics Express 24 3162Google Scholar
[19] Li W, Liu H, Zhang J, Yao B, Feng S, Wei L, Mao Q 2017 IEEE Photon. J. 9 1Google Scholar
[20] Wang W, Qi H, Song Z, Guo J, Ni J, Wang C, Peng G 2020 Opt. Commun. 467 125747Google Scholar
[21] Geng J, Wang Q, Luo T, Case B, Jiang S, Amzajerdian F, Yu J 2012 Optics Lett. 37 3795Google Scholar
[22] Hou Y, Zhang Q, Qi S, Feng X, Wang P 2016 Optics Express 24 28761Google Scholar
[23] Poozesh R, Madanipour K, Parvin P 2019 Optics Lett. 44 122Google Scholar
[24] Fang S, Zhang Z, Yang C, Lin W, Cen X, Zhao Q, Feng Z, Yang Z, Xu S 2022 IEEE Photon. Technol. Lett. 34 255Google Scholar
[25] Fei W, Deyuan S, Hao C, Dianyuan F, Qisheng L 2011 Optical Rev. 18 360Google Scholar
[26] 栾昆鹏, 沈炎龙, 陶蒙蒙, 朱峰, 黄超, 谌鸿伟, 易爱平 2019 光学学报 39 9Google Scholar
Luan K P, Shen Y L, Tao M M, Zhu F, Huang C, Chen H W, Yi A P 2019 Acta Optica Sin. 39 9Google Scholar
[27] Larsen C, Hansen K P, Mattsson K E, Bang O 2014 Optics Express 22 1490Google Scholar
[28] Li Y, Huang L, Gao L, Lan T, Cao Y, Ikechukwu I P, Shi L, Liu Y, Li F, Zhu T 2018 Optics Express 26 26896Google Scholar
[29] 白燕, 延凤平, 冯亭, 韩文国, 张鲁娜, 程丹, 白卓娅, 温晓东 2019 中国激光 46 64Google Scholar
Bai Y, Yan F P, Feng T, Han W G, Zhang L N, Cheng D, Bai Z Y, Wen X D 2019 Chin. J. Lasers 46 64Google Scholar
[30] Zhang J, Sheng Q, Zhang L, Shi C, Sun S, Bai X, Shi W, Yao J 2021 Optics Express 29 21409Google Scholar
[31] Stepanov S, Fotiadi A A, Mégret P 2007 Optics Express 15 8832Google Scholar
[32] Pal D, Paul A, Chowdhury S D, Pal M, Sen R, Pal A 2018 Appl. Optics 57 3546Google Scholar
[33] Yin T, Song Y, Jiang X, Chen F, He S 2019 Optics Express 27 15794Google Scholar
计量
- 文章访问数: 5121
- PDF下载量: 109
- 被引次数: 0