搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于频移反馈腔的全光纤射频调制脉冲激光研究

杨宏志 赵长明 张海洋 杨苏辉 李晨

引用本文:
Citation:

基于频移反馈腔的全光纤射频调制脉冲激光研究

杨宏志, 赵长明, 张海洋, 杨苏辉, 李晨

All-fiber radio frequency-modulated pulsed laser based on frequency-shift feedback loop

Yang Hong-Zhi, Zhao Chang-Ming, Zhang Hai-Yang, Yang Su-Hui, Li Chen
PDF
导出引用
  • 射频调制的脉冲激光是激光雷达探测领域内的一项重要研究内容.根据声光斩波器的强度和频率调制特性,设计了基于频移反馈腔的全光纤射频调制脉冲激光.理论上,建立了基于频移反馈腔的激光外差相干理论模型,并进行了数值仿真.根据理论模型,实验上严格控制频移反馈腔的长度和声光斩波器触发信号的周期,在100 MHz的射频信号驱动下,产生了脉冲宽度110 ns、重复频率约20 kHz的具有最高700 MHz射频调制的脉冲激光(脉内调制激光);同时微调斩波周期可以实现脉冲前沿或后沿的多样性射频调制.通过改变反馈腔内光纤放大器的输出功率实现了射频调制深度的连续可调,最高达到了0.67.
    Lidar-radar by using an radio frequency modulated (RF-modulated) laser transmitter is a powerful technique for applications involving remote sensing. The method is based on the use of an optically carried RF signal in order to acquire the merits of both the directivity of the optical beam (lidar) and the accuracy of RF signal processing (radar). Compared with single-frequency coherent lidars, lidar-radars are less sensitive to atmospheric turbulence and the speckle noise induced by target roughness. For long range detection, pulsed operation is usually required because of the high peak power. In order to meet the requirement for long range detection, an RF-modulated pulse train based on an all-fiber frequency shifted feedback loop is proposed in this paper. A continuous-wave single-frequency fiber laser (seed laser) is coupled into a fiber link and an acousto-optic chopper is used as a frequency shifter and beam chopper. A Yb3+-doped fiber amplifier is used to compensate for the loss of the signal in the fiber loop. The pulse duration is determined by the open time of acousto-optic chopper, which is fixed at 110 ns. A square wave generated by an arbitrary waveform generator is used as a trigger signal of the acousto-optic chopper. The RF within the pulse results from the interference of frequency shifed pulse with the seed laser. By inserting a 10 km fiber in the loop and accurately controlling the trigger cycle of the acousto-optic chopper equal to the roundtrip time of the loop, the pulse train generated by acousto-optic chopper can circulate in the loop, leading to the generation of RF-modulated pulse with about 20 kHz repetition rate and 110 ns width. The gain provided by fiber amplifier in the loop partially compensates for the loss. By adjusting the gain of fiber amplifier, the modulation depth of RF within the pulse can be continuously adjusted and the maximum modulation depth is 0.67. We also present an time-delayed scalar interference model which includes the loop length, trigger cycle, frequency-shift, and the gain. According to the theoretical model, the RF-modulated pulse affected by trigger cycle and fiber amplifier is numerically simulated. The experimental results accord well with theoritical predictions. The RF-modulated pulse has the advantage of high pulse-to-pulse coherence, which provides potential applications in lidar-radar detection. Besides, with an additional frequency doubling stage one can obtain a source for underwater detections and communications. Extension of the scheme to the 1.5 μm telecommunication window is straightforwardfor various radio-over-fiber applications.
      通信作者: 张海洋, ocean@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61308054)资助的课题.
      Corresponding author: Zhang Hai-Yang, ocean@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61308054).
    [1]

    Morvan L, Lai N D, Dolfi D, Huignard J P, Brunel M, Bretenaker F, Floch A L 2002 Appl. Opt. 41 5702

    [2]

    Zheng Z, Zhao C M, Zhang H Y, Yang S H, Zhang D H, Yang H Z, Liu J W 2016 Opt. Laser Technol. 80 169

    [3]

    Cheng C H, Lee C W, Lin T W, Lin F Y 2012 Opt. Express 20 20255

    [4]

    Pillet G, Morvan L, Dolfi D, Huignard J P 2008 Proc. SPIE 7114 71140E

    [5]

    Dominicis L D, Collibus M F D, Fornetti G, Guarneri M, Nuvoli M, Ricci R, Francucci M 2009 J. Eur. Opt. Soc. Rapid Pub. 5 10004

    [6]

    Diaz R, Chan S C, Liu J M 2006 Opt. Lett. 31 3600

    [7]

    Ghelfi P, Laghezza F, Scotti F, Serafine G, Capria A, Pinna S, Onori D, Porzi C, Scaffardi M, Malacarne A, Vercesi V, Lazzeri E, Berizzi F, Bogoni A 2014 Nature 507 341

    [8]

    Kao D C, Kane T J, Mullen L J 2004 Opt. Lett. 29 1203

    [9]

    Vallet M, Barreaux J, Romanelli M, Pillet G, Thévenin J, Wang L, Brunel M 2013 Appl. Opt. 52 5402

    [10]

    Brunel M, Vallet M 2008 Opt. Lett. 33 2524

    [11]

    Thenenin J, Vallet M, Brunel M, Gilles H, Girard S 2011 J. Opt. Soc. Am. B 28 1104

    [12]

    Zhang H Y, Brunel M, Romanelli M, Vallet M 2016 Appl. Opt. 55 2467

    [13]

    Kowalski F V, Shattil S J, Halle P D 1988 Appl. Phys. Lett. 53 734

    [14]

    Phillips M W, Liang G Y, Barr J M R 1993 Opt. Commun. 100 473

    [15]

    Sabert H, Brinkmeyer E 1994 J. Lightwave Technol. 12 1360

    [16]

    Guillet d C H, Jacquin O, Hugon O, Glastre W, Lacot E, Marklof J 2013 Opt. Express 21 15065

    [17]

    de Chatellus H G, Lacot E, Glastre W, Jacquin O, Hugon O 2013 Phys. Rev. A 88 033828

    [18]

    Chatellus H G D, Cortés L R, Azaña J 2016 Optica 3 1

  • [1]

    Morvan L, Lai N D, Dolfi D, Huignard J P, Brunel M, Bretenaker F, Floch A L 2002 Appl. Opt. 41 5702

    [2]

    Zheng Z, Zhao C M, Zhang H Y, Yang S H, Zhang D H, Yang H Z, Liu J W 2016 Opt. Laser Technol. 80 169

    [3]

    Cheng C H, Lee C W, Lin T W, Lin F Y 2012 Opt. Express 20 20255

    [4]

    Pillet G, Morvan L, Dolfi D, Huignard J P 2008 Proc. SPIE 7114 71140E

    [5]

    Dominicis L D, Collibus M F D, Fornetti G, Guarneri M, Nuvoli M, Ricci R, Francucci M 2009 J. Eur. Opt. Soc. Rapid Pub. 5 10004

    [6]

    Diaz R, Chan S C, Liu J M 2006 Opt. Lett. 31 3600

    [7]

    Ghelfi P, Laghezza F, Scotti F, Serafine G, Capria A, Pinna S, Onori D, Porzi C, Scaffardi M, Malacarne A, Vercesi V, Lazzeri E, Berizzi F, Bogoni A 2014 Nature 507 341

    [8]

    Kao D C, Kane T J, Mullen L J 2004 Opt. Lett. 29 1203

    [9]

    Vallet M, Barreaux J, Romanelli M, Pillet G, Thévenin J, Wang L, Brunel M 2013 Appl. Opt. 52 5402

    [10]

    Brunel M, Vallet M 2008 Opt. Lett. 33 2524

    [11]

    Thenenin J, Vallet M, Brunel M, Gilles H, Girard S 2011 J. Opt. Soc. Am. B 28 1104

    [12]

    Zhang H Y, Brunel M, Romanelli M, Vallet M 2016 Appl. Opt. 55 2467

    [13]

    Kowalski F V, Shattil S J, Halle P D 1988 Appl. Phys. Lett. 53 734

    [14]

    Phillips M W, Liang G Y, Barr J M R 1993 Opt. Commun. 100 473

    [15]

    Sabert H, Brinkmeyer E 1994 J. Lightwave Technol. 12 1360

    [16]

    Guillet d C H, Jacquin O, Hugon O, Glastre W, Lacot E, Marklof J 2013 Opt. Express 21 15065

    [17]

    de Chatellus H G, Lacot E, Glastre W, Jacquin O, Hugon O 2013 Phys. Rev. A 88 033828

    [18]

    Chatellus H G D, Cortés L R, Azaña J 2016 Optica 3 1

  • [1] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [2] 陈钱, 马英起, 陈睿, 朱翔, 李悦, 韩建伟. 激光模拟瞬态剂量率闩锁效应电流特征机制研究. 物理学报, 2019, 68(12): 124202. doi: 10.7498/aps.68.20190237
    [3] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进. 物理学报, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [4] 程丽君, 杨苏辉, 赵长明, 张海洋. 高功率宽带射频调制连续激光源. 物理学报, 2018, 67(3): 034203. doi: 10.7498/aps.67.20172017
    [5] 刘向远, 钱仙妹, 朱文越, 刘丹丹, 范传宇, 周军, 杨欢. 基于波长330 nm激光激发多色激光导星回波光子数的数值计算与探讨. 物理学报, 2018, 67(1): 014205. doi: 10.7498/aps.67.20171025
    [6] 张伟, 石震武, 霍大云, 郭小祥, 彭长四. 脉冲激光原位辐照对InAs/GaAs(001)量子点生长的影响. 物理学报, 2016, 65(11): 117801. doi: 10.7498/aps.65.117801
    [7] 赵星, 梅博, 毕津顺, 郑中山, 高林春, 曾传滨, 罗家俊, 于芳, 韩郑生. 0.18 m部分耗尽绝缘体上硅互补金属氧化物半导体电路单粒子瞬态特性研究. 物理学报, 2015, 64(13): 136102. doi: 10.7498/aps.64.136102
    [8] 韩舸, 龚威, 马昕, 相成志, 梁艾琳, 郑玉新. 地基CO2廓线探测差分吸收激光雷达. 物理学报, 2015, 64(24): 244206. doi: 10.7498/aps.64.244206
    [9] 陈睿, 余永涛, 上官士鹏, 封国强, 韩建伟. 90 nm互补金属氧化物半导体静态随机存储器局部单粒子闩锁传播效应诱发多位翻转的机理. 物理学报, 2014, 63(12): 128501. doi: 10.7498/aps.63.128501
    [10] 李宏伟, 韩建伟, 蔡明辉, 吴逢时, 张振龙. 激光诱导等离子体模拟微小空间碎片撞击诱发放电研究. 物理学报, 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [11] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [12] 陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼. 基于双光注入锁定1550 nm垂直腔表面发射半导体激光器产生可调谐毫米波. 物理学报, 2013, 62(10): 104207. doi: 10.7498/aps.62.104207
    [13] 粟荣涛, 周朴, 王小林, 冀翔, 许晓军. 不同波形脉冲激光的时域误差对相干合成的影响. 物理学报, 2012, 61(8): 084206. doi: 10.7498/aps.61.084206
    [14] 彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强. 皮秒和纳秒单脉冲激光加热Al/NC复合纳米含能材料的热动力学分析. 物理学报, 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
    [15] 冯则胡, 傅喜泉, 章礼富, 徐慧文, 文双春. 超短脉冲激光空间调制下小尺度自聚焦的实验研究. 物理学报, 2008, 57(4): 2253-2259. doi: 10.7498/aps.57.2253
    [16] 吴国华, 郭 弘, 刘明伟, 邓冬梅, 刘时雄. 尾波场与相对论效应对激光脉冲自相位调制及频移影响的比较研究. 物理学报, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
    [17] 乔 峰, 黄信凡, 朱 达, 马忠元, 邹和成, 隋妍萍, 李 伟, 周晓辉, 陈坤基. 激光限制结晶技术制备nc-Si/SiO2多层膜. 物理学报, 2004, 53(12): 4303-4307. doi: 10.7498/aps.53.4303
    [18] 张端明, 侯思普, 关 丽, 钟志成, 李智华, 杨凤霞, 郑克玉. 脉冲激光制备薄膜材料的烧蚀机理. 物理学报, 2004, 53(7): 2237-2243. doi: 10.7498/aps.53.2237
    [19] 张端明, 李智华, 黄明涛, 张美军, 关丽, 邹明清, 钟志成. 脉冲激光烧蚀块状靶材的双动态界面研究. 物理学报, 2001, 50(5): 914-920. doi: 10.7498/aps.50.914
    [20] 沈宇震, 王清月, 邢歧荣, 石季英. 啁啾脉冲激光放大中的自相位调制效应. 物理学报, 1996, 45(2): 214-221. doi: 10.7498/aps.45.214
计量
  • 文章访问数:  3388
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-06
  • 修回日期:  2017-05-11
  • 刊出日期:  2017-09-05

基于频移反馈腔的全光纤射频调制脉冲激光研究

  • 1. 北京理工大学光电学院, 北京 100081
  • 通信作者: 张海洋, ocean@bit.edu.cn
    基金项目: 国家自然科学基金(批准号:61308054)资助的课题.

摘要: 射频调制的脉冲激光是激光雷达探测领域内的一项重要研究内容.根据声光斩波器的强度和频率调制特性,设计了基于频移反馈腔的全光纤射频调制脉冲激光.理论上,建立了基于频移反馈腔的激光外差相干理论模型,并进行了数值仿真.根据理论模型,实验上严格控制频移反馈腔的长度和声光斩波器触发信号的周期,在100 MHz的射频信号驱动下,产生了脉冲宽度110 ns、重复频率约20 kHz的具有最高700 MHz射频调制的脉冲激光(脉内调制激光);同时微调斩波周期可以实现脉冲前沿或后沿的多样性射频调制.通过改变反馈腔内光纤放大器的输出功率实现了射频调制深度的连续可调,最高达到了0.67.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回