搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率宽带射频调制连续激光源

程丽君 杨苏辉 赵长明 张海洋

引用本文:
Citation:

高功率宽带射频调制连续激光源

程丽君, 杨苏辉, 赵长明, 张海洋

High-power wideband radio-frequency intensity modulated continuous wave laser

Cheng Li-Jun, Yang Su-Hui, Zhao Chang-Ming, Zhang Hai-Yang
PDF
导出引用
  • 射频强度调制激光作为激光雷达系统的载波可以有效提高系统的抗干扰和抗散射能力,高功率宽带射频强度调制光源是实现高分辨率远距离探测的关键.本文采用在Nd:YAG激光器的耦合腔中插入一对四分之一波片的方法实现了频差调谐范围为30 MHz1.5 GHz的双频激光输出,结合光纤振荡功率放大技术,将双频信号光功率放大为50 W.耦合腔双频种子源具有良好的功率和频率稳定性,输出功率为9.5 mW时,功率标准差为0.145 mW,稳定性为1.52%,输出双频激光的频差为250 MHz时,拍频的标准差为1.6144 MHz.种子光进行三级光纤功率放大,得到50 W双频激光输出.放大后的双频激光功率波动范围小于0.1 W,双频拍频的标准差为1.777 MHz,很好地保持了放大之前的功率稳定性和双频频差稳定性.
    A high-power wideband radio-frequency (RF) intensity modulated continuous wave light source is demonstrated. The high-power dual-frequency light source is obtained via a dual-frequency laser signal seeding fiber power amplifier. A diode laser pumped dual-frequency laser is built as the seed and a diode laser pumped three-stage Yb3 + doped large mode area fiber power amplifier is used to enhance the output power to 50 W. In the dual-frequency seed laser, a coupled cavity composed of the Nd:YAG gain crystal and output coupler is used as the mode selector and enforces single longitude mode to oscillate. Two quarter wave plates are inserted in the laser cavity to lift the frequency degeneration of the two orthogonally polarized modes. By changing the angle between the fast axes of the two quarter wave plates, the frequency difference between the two orthogonally polarized modes can be tuned from 30 MHz to 1.5 GHz. The standard difference of beat frequency is 1.6144 MHz and stability is 1.52% when a frequency difference of output dual-frequency laser is 250 MHz. This stable dual-frequency seed signal is amplified via a diode pumped Yb3 +-doped fiber power amplifier. In order to suppress amplified spontaneous emission and other nonlinear effects, a three-stage fiber amplification system is used. The first stage is a diode pumped fiber (5 m, 6/125 m, NA = 0.13) power amplifier. The pump power is fixed at 600 mW. The input dual frequency signal is 3.2 mW, and it is amplified to several hundred mW by the first fiber power amplifier. The second fiber amplifier is a diode laser pumped fiber (5 m, 10/125 m, NA = 0.075/0.46) amplifier. The pump power is fixed at 10 W, and the dual frequency signal is amplified to sub watts after the second fiber amplifier. A 5 m large mode area fiber (25/250 m, NA=0.065/0.46) is used in the final amplification. A maximum amplified power of 50.2 W is obtained when the pump power is 70 W in the experiment. The signal-to-noise ratio of the beat note increases from 25 dB to 40 dB via amplification. The output power fluctuation of the amplified signal at 50 W is smaller than 0.1 W during 30 min. The RF frequency stability is well maintained during the amplification, and the beat-note frequency instability is 1.777 MHz. This high-power dual-frequency light source with wide beat note frequency bandwidth has potential applications in dual-frequency coherent lidar system for long distance ranging and imaging or underwater detections after the frequency has been doubled to 532 nm.
      通信作者: 杨苏辉, suhuiyang@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61275053,61741502)资助的课题.
      Corresponding author: Yang Su-Hui, suhuiyang@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275053, 61741502).
    [1]

    He Y, Wu J 1998 Laser Optoelectr. Prog. 35 29 (in Chinese) [何毅, 吴健 1998 激光与光电子学进展 35 29]

    [2]

    Li Z G, Sun Z Z, Zhao Z L, Zhu X P 2016 Laser Infrared 46 1467 (in Chinese) [李志刚, 孙泽中, 赵增亮, 竹孝鹏 2016 激光与红外 46 1467]

    [3]

    Zheng Z, Zhao C, Zhang H, Yang S, Zhang D, Yang H, Liu J 2016 Opt. Laser Tech. 80 169

    [4]

    Wang S, Yang S H, Wu X, Zhu Q H 2010 Chin. Phys. Lett. 27 084202

    [5]

    Pellen F, Jezequel V, Zion G, Jeune B L 2012 Appl. Opt. 51 7690

    [6]

    Brunel M, Amon A, Vallet M 2005 Opt. Lett. 30 2418

    [7]

    Maxin J, Molin S, Pillet G, Morvan L 2011 IEEE Photon. Conference 58 479

    [8]

    Xing J H, Jiao M X 2015 Acta Photon. Sin. 44 0214003 (in Chinese) [邢俊红, 焦明星 2015 光子学报 44 0214003]

    [9]

    Hu M, Zhang F, Zhang X, Zheng Y Y, Sun X, Xu Y X, Xu W Z, Ge J H, Xiang Z 2014 Acta Opt. Sin. 34 1114003 (in Chinese) [胡淼, 张飞, 张翔, 郑尧元, 孙骁, 徐亚希, 许伟忠, 葛剑虹, 项震 2014 光学学报 34 1114003]

    [10]

    He T, Yang S, Zhao C, Zhang H, Liang Y, Kang Y 2015 Laser Phys. Lett. 12 035101

    [11]

    Du W B, Leng J Y, Zhu J J, Zhou P, Xu X J, Shu B H 2012 Acta Phys. Sin. 61 114203 (in Chinese) [杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏 2012 物理学报 61 114203]

    [12]

    Huang L, Li L, Ma P, Wang X, Zhou P 2016 Opt. Express 24 26722

    [13]

    Li J, Yang S, Zhao C, Zhang H, Xie W 2011 Appl. Opt. 50 1329

    [14]

    Keller U, Knox W H, Roskos H 1990 Opt. Lett. 15 1377

    [15]

    Draegert D 1971 IEEE J. Quantum Elect. 7 300

    [16]

    Tang C L, Statz H, Demars G 1963 J. Appl. Phys. 34 2289

    [17]

    Cheng L J, Yang S H, Zhao C M, Zhang H Y 2017 Acta Opt. Sin. 37 0714002 (in Chinese) [程丽君, 杨苏辉, 赵长明, 张海洋 2017 光学学报 37 0714002]

    [18]

    Wiesenfeld K, Bracikowski C, James G, Roy R 1990 Phys. Rev. Lett. 65 1749

    [19]

    Park J D, Mckay A M, Dawes J M 2009 Opt. Express 17 6053

    [20]

    Leng J Y, Wu W M, Chen S P, Hou J, Xu X J 2011 Acta Opt. Sin. 31 0606007 (in Chinese) [冷进勇, 吴武明, 陈胜平, 侯静, 许晓军 2011 光学学报 31 0606007]

  • [1]

    He Y, Wu J 1998 Laser Optoelectr. Prog. 35 29 (in Chinese) [何毅, 吴健 1998 激光与光电子学进展 35 29]

    [2]

    Li Z G, Sun Z Z, Zhao Z L, Zhu X P 2016 Laser Infrared 46 1467 (in Chinese) [李志刚, 孙泽中, 赵增亮, 竹孝鹏 2016 激光与红外 46 1467]

    [3]

    Zheng Z, Zhao C, Zhang H, Yang S, Zhang D, Yang H, Liu J 2016 Opt. Laser Tech. 80 169

    [4]

    Wang S, Yang S H, Wu X, Zhu Q H 2010 Chin. Phys. Lett. 27 084202

    [5]

    Pellen F, Jezequel V, Zion G, Jeune B L 2012 Appl. Opt. 51 7690

    [6]

    Brunel M, Amon A, Vallet M 2005 Opt. Lett. 30 2418

    [7]

    Maxin J, Molin S, Pillet G, Morvan L 2011 IEEE Photon. Conference 58 479

    [8]

    Xing J H, Jiao M X 2015 Acta Photon. Sin. 44 0214003 (in Chinese) [邢俊红, 焦明星 2015 光子学报 44 0214003]

    [9]

    Hu M, Zhang F, Zhang X, Zheng Y Y, Sun X, Xu Y X, Xu W Z, Ge J H, Xiang Z 2014 Acta Opt. Sin. 34 1114003 (in Chinese) [胡淼, 张飞, 张翔, 郑尧元, 孙骁, 徐亚希, 许伟忠, 葛剑虹, 项震 2014 光学学报 34 1114003]

    [10]

    He T, Yang S, Zhao C, Zhang H, Liang Y, Kang Y 2015 Laser Phys. Lett. 12 035101

    [11]

    Du W B, Leng J Y, Zhu J J, Zhou P, Xu X J, Shu B H 2012 Acta Phys. Sin. 61 114203 (in Chinese) [杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏 2012 物理学报 61 114203]

    [12]

    Huang L, Li L, Ma P, Wang X, Zhou P 2016 Opt. Express 24 26722

    [13]

    Li J, Yang S, Zhao C, Zhang H, Xie W 2011 Appl. Opt. 50 1329

    [14]

    Keller U, Knox W H, Roskos H 1990 Opt. Lett. 15 1377

    [15]

    Draegert D 1971 IEEE J. Quantum Elect. 7 300

    [16]

    Tang C L, Statz H, Demars G 1963 J. Appl. Phys. 34 2289

    [17]

    Cheng L J, Yang S H, Zhao C M, Zhang H Y 2017 Acta Opt. Sin. 37 0714002 (in Chinese) [程丽君, 杨苏辉, 赵长明, 张海洋 2017 光学学报 37 0714002]

    [18]

    Wiesenfeld K, Bracikowski C, James G, Roy R 1990 Phys. Rev. Lett. 65 1749

    [19]

    Park J D, Mckay A M, Dawes J M 2009 Opt. Express 17 6053

    [20]

    Leng J Y, Wu W M, Chen S P, Hou J, Xu X J 2011 Acta Opt. Sin. 31 0606007 (in Chinese) [冷进勇, 吴武明, 陈胜平, 侯静, 许晓军 2011 光学学报 31 0606007]

  • [1] 赵卫, 付士杰, 盛泉, 薛凯, 史伟, 姚建铨. 辅助光对高功率掺镱光纤激光放大器受激拉曼散射效应的抑制作用. 物理学报, 2024, 73(20): 204201. doi: 10.7498/aps.73.20240895
    [2] 奚小明, 杨保来, 王鹏, 张汉伟, 王小林, 韩凯, 王泽锋, 许晓军, 陈金宝. 万瓦级光纤激光双色镜合成技术. 物理学报, 2023, 72(18): 184203. doi: 10.7498/aps.72.20230657
    [3] 陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标. 基于宽带可调谐、窄线宽掺铥光纤激光器的2 μm波段水的超光谱吸收测量. 物理学报, 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [4] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [5] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器. 物理学报, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [6] 王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐, 潘蓉, 黄昱升, 田佳丁, 李丹, 闫平, 巩马理. 国产光纤实现同带抽运3000 W激光输出. 物理学报, 2018, 67(2): 024205. doi: 10.7498/aps.67.20171676
    [7] 熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清. 新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究. 物理学报, 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [8] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器. 物理学报, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [9] 郑狄, 潘炜, 闫连山, 罗斌, 邹喜华, 刘新开, 易安林. 基于布里渊载波相移的宽带可调谐二倍频微波信号生成. 物理学报, 2014, 63(15): 154214. doi: 10.7498/aps.63.154214
    [10] 袁忠才, 时家明. 高功率微波与等离子体相互作用理论和数值研究. 物理学报, 2014, 63(9): 095202. doi: 10.7498/aps.63.095202
    [11] 姜曼, 肖虎, 周朴, 王小林, 刘泽金. 高功率、低量子亏损同带抽运掺镱光纤放大器. 物理学报, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [12] 董小林, 肖虎, 马阎星, 周朴, 郭少锋. 高功率全光纤保偏主振荡功率放大型光纤激光器的实验研究. 物理学报, 2012, 61(6): 064207. doi: 10.7498/aps.61.064207
    [13] 吴洋, 许州, 徐勇, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥. 低功率驱动的高功率微波放大器实验研究. 物理学报, 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [14] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [15] 谢仕永, 鲁远甫, 薄勇, 崔前进, 徐一汀, 许家林, 彭钦军, 崔大复, 许祖彦. 高功率可调谐1064 nm准连续单频激光振荡-放大系统研究. 物理学报, 2009, 58(7): 4659-4663. doi: 10.7498/aps.58.4659
    [16] 刘涛, 顾畹仪, 史培明, 喻松, 张华. 基于准相位匹配晶体的宽带可调谐光参量放大过程研究. 物理学报, 2009, 58(4): 2482-2487. doi: 10.7498/aps.58.2482
    [17] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [18] 徐 帆, 张新亮, 刘德明, 黄德修. 基于单端半导体光放大器的可调谐超短光脉冲源理论与实验研究. 物理学报, 2006, 55(1): 211-216. doi: 10.7498/aps.55.211
    [19] 李惠青, 张 杰, 崔大复, 许祖彦, 宁永强, 晏长岭, 秦 莉, 刘 云, 王立军, 曹健林. 高功率垂直腔面发射半导体激光器优化设计研究. 物理学报, 2004, 53(9): 2986-2990. doi: 10.7498/aps.53.2986
    [20] 方进勇, 宁 辉, 张世龙, 乔登江. 利用速调管放大器产生高功率微波拍波实验研究. 物理学报, 2003, 52(4): 911-913. doi: 10.7498/aps.52.911
计量
  • 文章访问数:  6982
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-11
  • 修回日期:  2017-10-11
  • 刊出日期:  2018-02-05

/

返回文章
返回