搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于宽带可调谐、窄线宽掺铥光纤激光器的2 μm波段水的超光谱吸收测量

陶蒙蒙 王亚民 吴昊龙 李国华 王晟 陶波 叶景峰 冯国斌 叶锡生 陈卫标

引用本文:
Citation:

基于宽带可调谐、窄线宽掺铥光纤激光器的2 μm波段水的超光谱吸收测量

陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标

Hyperspectral absorption of water around 2 μm based on a boradband tunable, narrow linewidth Tm-doped fiber laser

Tao Meng-Meng, Wang Ya-Min, Wu Hao-Long, Li Guo-Hua, Wang Sheng, Tao Bo, Ye Jing-Feng, Feng Guo-Bin, Ye Xi-Sheng, Chen Wei-Biao
PDF
HTML
导出引用
  • 1.8—2.0 μm波段包含大量水的吸收谱线, 且吸收强度高于传统的1.3—1.5 μm波段, 在水的吸收光谱测量中具有很大的应用潜力. 超光谱吸收测量技术可以利用宽带范围内的大量吸收谱线来实现物理参数的反演, 与传统的单/双谱线的可调谐二极管吸收光谱技术相比具有更好的稳定性、准确性和更宽的使用范围. 宽带调谐的窄线宽激光光源是实现超光谱吸收测量的关键器件. 利用可调谐法布里-珀罗(FP)腔和光纤可饱和吸收体, 搭建了宽带调谐的窄线宽2 μm光纤激光器. 利用掺铥光纤的再吸收特性, 通过合理设计增益光纤长度, 得到了在1910—1970 nm约60 nm的光谱范围内连续可调的激光输出, 且激光器静态线宽小于0.1 nm, 能够满足水的超光谱吸收测量实验的要求. 利用该激光器分别对空气和酒精火焰中水在2 μm波段的宽带吸收光谱进行了测量. 在常温空气中, 该光源可以在1910—1965 nm的光谱范围内有效分辨40余条水的吸收谱线; 在酒精火焰中, 该光源可以在1950—1970 nm的光谱范围内有效分辨近50条水的吸收谱线. 通过与HITRAN2016数据库的比对反演得到激光器在动态扫描过程中的线宽约为0.06 nm, 与静态测试结果相近; 反演得到的空气温度约为298 K, 空气中水的摩尔分数约为2%, 与温湿度计测量结果一致; 反演得到的酒精火焰温度约为1220 K, 与热电偶测量结果较为接近.
    The 1.8–2.0 μm waveband contains abundant absorption lines of water, which are much stronger than those in the traditional 1.3–1.5 μm waveband, exhibiting huge potentials for absorption spectrum applications of water. In the hyperspectral absorption spectrum, physical parameters of the target molecule can be derived from lots of absorption lines within a broadband scanning range, achieving the results more robust, accurate and versatile than the results from the conventional tunable diode laser absorption spectrum in which only one or two absorption lines are used. The key to hyperspectral absorption is the development of broadband tunable, narrow linewidth laser sources emitting in the wavelength range of interest. With a tunable fiber FP filter and a fiber saturable absorber, a Tm-doped fiber laser is established, featuring broadband tenability and narrow linewidth. Taking advantage of the re-absorption characteristics of Tm-doped silica fibers, a wavelength tuning range covering 60 nm from 1910–1970 nm is obtained through the appropriately designing of the active fiber length. The measured laser linewidth at steady state is smaller than 0.1 nm, which is suitable for water absorption spectrum. Hyperspectral absorption measurements of water in air and alcohol flame are conducted. In room-temperature air, more than 40 absorption lines are recognized within a tuning range of 1910–1965 nm, while, in alcohol flame, the number of detected lines reaches about 50. Comparison with the HITRAN2016 database gives a laser linewidth of about 0.06 nm which is very close to the static linewidth measured by an OSA. The temperature of the air is derived to be 298 K with a water mole fraction of about 2%, which is consistent with the measurement of the hygrothermograph. And the calculation indicates an alcohol flame temperature of about 1220 K, which is very close to the measurement result of the thermocouple.
      通信作者: 叶景峰, yejingfeng@nint.ac.cn ; 陈卫标, wbchen@siom.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 62105268, 91841303, 52106222)和激光与物质相互作用国家重点实验室基金(批准号: SKLLIM2110)资助的课题
      Corresponding author: Ye Jing-Feng, yejingfeng@nint.ac.cn ; Chen Wei-Biao, wbchen@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62105268, 91841303, 52106222) and the State Key Laboratory of Laser Interaction with Matter, China (Grant No. SKLLIM2110)
    [1]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energ. Combust. Sci. 60 132

    [2]

    Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta B 106 45Google Scholar

    [3]

    Hanson R K, Davidson D F 2014 Prog. Energ. Combust. Sci. 44 103Google Scholar

    [4]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

    [5]

    Regalia L, Oudot C, Mikhailenko S, Wang L, Thomas X, Jenouvrier A, Von der Heyden P 2014 J. Quant. Spectrosc. Radiat. Transfer 136 119Google Scholar

    [6]

    Barber R J, Tennyson J, Harris G J, Tolchenov R N 2006 Mon. Not. R. Astron. Soc. 368 1087Google Scholar

    [7]

    Liu X, Zhou X, Jeffries J B, Hanson R K 2007 J. Quant. Spectrosc. Radiat. Transfer 103 565Google Scholar

    [8]

    许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰 2012 物理学报 61 234204Google Scholar

    Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li H, Yuan S, Geng H, Kan R F 2012 Acta Phys. Sin. 61 234204Google Scholar

    [9]

    张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军 2012 物理学报 61 034214Google Scholar

    Zhang L, Liu J G, Kan R F, Liu W Q, Zhang Y J, Xu Z Y, Chen J 2012 Acta Phys. Sin. 61 034214Google Scholar

    [10]

    陶波, 胡志云, 王晟, 叶景峰, 赵新艳, 叶锡生 2014 工程热物理学报 35 4Google Scholar

    Tao B, Hu Z Y, Wang S, Ye J F, Zhao X Y, Ye X S 2014 J. Eng. Thermophys. 35 4Google Scholar

    [11]

    Wang F, Wu Q, Huang Q, Zhang H, Yan J, Cen K 2015 Opt. Commun. 346 53Google Scholar

    [12]

    Hunsmann S, Wunderle K, Wagner S, Rascher U, Schurr U, Ebert V 2008 Appl. Phys. B 92 393Google Scholar

    [13]

    Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert V 2012 Appl. Phys. B 109 521Google Scholar

    [14]

    Caswell A W, Kraetschmer T, Rein K, Sanders S T, Roy S, Shouse D T, Gord J R 2010 Appl. Opt. 49 4963Google Scholar

    [15]

    Li F, Yu X, Gu H, Li Z, Zhao Y, Ma L, Chen L, Chang X 2011 Appl. Opt. 50 6697Google Scholar

    [16]

    张步强, 徐振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰 2019 物理学报 68 233301Google Scholar

    Zhang B Q, Xu Z Y, Liu J G, Yao L, Ruan J, Hu J Y, Xia H H, Nie W, Yuan F, Kan R F 2019 Acta Phys. Sin. 68 233301Google Scholar

    [17]

    Huber R, Wojtkowski M, Taira K, Fujimoto J G 2005 Opt. Express 13 3513Google Scholar

    [18]

    Huber R, Wojtkowski M, and Fujimoto J G 2006 Opt. Express 14 3225Google Scholar

    [19]

    Kranendonk L A, An X, Caswell A W, Herold R E, Sanders S T, Huber R, Fujimoto J G, Okura Y, Urata Y 2007 Opt. Express 15 15115Google Scholar

    [20]

    Caswell A W, Roy S, An X, Sanders S T, Schauer F R, Gord J R 2013 Appl. Opt. 52 2893Google Scholar

    [21]

    Ma L, Li X, Sanders S T, Caswell A W, Roy S R, Plemmons D H, Gord J R 2013 Opt. Express 21 1152Google Scholar

    [22]

    Zhou X, Liu X, Jeffries J B, Hanson R K 2003 Meas. Sci. Technol. 14 1459Google Scholar

    [23]

    符鹏飞, 超星, 侯凌云, 王振海, 孟庆慧 2019 工程热物理学报 40 2176Google Scholar

    Fu P F, Chao X, Hou L Y, Wang Z H, Meng Q H 2019 J. Eng. Thermophys. 40 2176Google Scholar

    [24]

    陶蒙蒙, 陶波, 余婷, 王振宝, 冯国斌, 叶锡生 2016 红外与激光工程 45 1205002Google Scholar

    Tao M M, Tao B, Yu T, Wang Z B, Feng G B, Ye X S 2016 Infrar. Laser Eng. 45 1205002Google Scholar

    [25]

    Tao M, Tao B, Hu Z, Feng G, Ye X, Zhao J 2017 Opt. Express 25 32386Google Scholar

    [26]

    陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军 2020 物理学报 69 034205Google Scholar

    Tao M M, Tao B, Ye J F, Shen Y L, Huang K, Ye X S, Zhao J 2020 Acta Phys. Sin. 69 034205Google Scholar

    [27]

    Jackson S D, King T A 1999 J. Lightwave Tehcnol. 17 948Google Scholar

    [28]

    Jackson S D, King T A 1998 Opt. Lett. 23 1462Google Scholar

    [29]

    Schulze G, Jirasek A, Yu M M L, Lim A, Turner R F B, Blades M W 2005 Appl. Spectrosc. 59 545Google Scholar

  • 图 1  单位标准大气压下, 1.8—2.0 μm波段在300 K和1500 K温度下水的吸收线分布

    Fig. 1.  Absorption lines of water in the 1.8–2.0 μm range at 300 K and 1500 K for one standard atmosphere pressure.

    图 2  不同增益光纤长度下掺铥光纤的ASE光谱图

    Fig. 2.  ASE spectra of Tm-doped fibers at different active fiber lengths.

    图 3  宽带可调谐窄线宽掺铥光纤激光器光路结构图 WDM, 波分复用器; TDF, 掺铥光纤; ISO, 隔离器; FP filter, 可调谐FP滤波器; OC, 输出耦合器; FSA, 光纤可饱和吸收体

    Fig. 3.  Optical path diagram of the broadband tunable narrow linewidth Tm-doped fiber laser: WDM, wavelength division multiplexer; TDF, Tm-doped fiber; ISO, isolator; FP filter, tunable FP filter; OC, output coupler; FSA, fiber saturable absorber.

    图 4  光纤FP滤波器的自由光谱范围

    Fig. 4.  Free spectral range of the fiber FP filter.

    图 5  激光光源输出光谱扫描范围

    Fig. 5.  Wavelength scanning range of the laser system.

    图 6  分辨率不同的光源典型输出光谱 (a) 1.00 nm; (b) 0.05 nm

    Fig. 6.  Typical spectra of the laser system with different resolution: (a) 1.00 nm; (b) 0.05 nm.

    图 7  激光器的输出功率特性

    Fig. 7.  Output power of the laser system.

    图 8  水的超光谱吸收典型测量结果 (a) 重频扫描; (b) 单次扫描

    Fig. 8.  Typical measurements of hyperspectral absorption of water: (a) Repetitive scan; (b) single scan.

    图 9  处理后的吸收光谱实测数据与理论模拟数据对比

    Fig. 9.  Comparison between the measured data of processed absorption spectrum and theoretical simulation spectrum.

    图 10  扫描过程中采样点与激光器输出波长的对应关系

    Fig. 10.  Relationship between sampling point and laser wavelength.

    图 11  吸收光谱实验数据一阶导数与不同激光线宽下的理论模拟数据一阶导数对比 (a) 不同激光线宽下的均方根残差分布; (b) 1941 nm附近的实测数据对比

    Fig. 11.  Comparison between first derivatives of the measured and theoretical absorption spectra under different laser linewidths: (a) RMSE distribution at different laser linewidths; (b) comparison of measured data around 1941 nm.

    图 12  空气中水的实测吸收光谱与理论吸收光谱对比 (a) 实测数据与理论数据; (b) 残差

    Fig. 12.  Comparison between measured and theoretical absorption spectra of water in air: (a) Measured and theoretical absorption spectra; (b) residual.

    图 13  酒精火焰中水的超光谱吸收典型测量结果 (a) 单次扫描; (b) 实测数据与理论数据的对比

    Fig. 13.  Typical hyperspectral absorption spectrum of water in alcohol flame: (a) Single scan; (b) comparison between measured and theoretical spectra.

    图 14  酒精火焰中水的实测吸收光谱与理论吸收光谱对比 (a) 实测数据与理论数据; (b) 残差

    Fig. 14.  Comparison between measured and theoretical absorption spectra of water in alcohol flame: (a) Measured and theoretical absorption spectra; (b) residual.

  • [1]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energ. Combust. Sci. 60 132

    [2]

    Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta B 106 45Google Scholar

    [3]

    Hanson R K, Davidson D F 2014 Prog. Energ. Combust. Sci. 44 103Google Scholar

    [4]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

    [5]

    Regalia L, Oudot C, Mikhailenko S, Wang L, Thomas X, Jenouvrier A, Von der Heyden P 2014 J. Quant. Spectrosc. Radiat. Transfer 136 119Google Scholar

    [6]

    Barber R J, Tennyson J, Harris G J, Tolchenov R N 2006 Mon. Not. R. Astron. Soc. 368 1087Google Scholar

    [7]

    Liu X, Zhou X, Jeffries J B, Hanson R K 2007 J. Quant. Spectrosc. Radiat. Transfer 103 565Google Scholar

    [8]

    许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰 2012 物理学报 61 234204Google Scholar

    Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li H, Yuan S, Geng H, Kan R F 2012 Acta Phys. Sin. 61 234204Google Scholar

    [9]

    张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军 2012 物理学报 61 034214Google Scholar

    Zhang L, Liu J G, Kan R F, Liu W Q, Zhang Y J, Xu Z Y, Chen J 2012 Acta Phys. Sin. 61 034214Google Scholar

    [10]

    陶波, 胡志云, 王晟, 叶景峰, 赵新艳, 叶锡生 2014 工程热物理学报 35 4Google Scholar

    Tao B, Hu Z Y, Wang S, Ye J F, Zhao X Y, Ye X S 2014 J. Eng. Thermophys. 35 4Google Scholar

    [11]

    Wang F, Wu Q, Huang Q, Zhang H, Yan J, Cen K 2015 Opt. Commun. 346 53Google Scholar

    [12]

    Hunsmann S, Wunderle K, Wagner S, Rascher U, Schurr U, Ebert V 2008 Appl. Phys. B 92 393Google Scholar

    [13]

    Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert V 2012 Appl. Phys. B 109 521Google Scholar

    [14]

    Caswell A W, Kraetschmer T, Rein K, Sanders S T, Roy S, Shouse D T, Gord J R 2010 Appl. Opt. 49 4963Google Scholar

    [15]

    Li F, Yu X, Gu H, Li Z, Zhao Y, Ma L, Chen L, Chang X 2011 Appl. Opt. 50 6697Google Scholar

    [16]

    张步强, 徐振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰 2019 物理学报 68 233301Google Scholar

    Zhang B Q, Xu Z Y, Liu J G, Yao L, Ruan J, Hu J Y, Xia H H, Nie W, Yuan F, Kan R F 2019 Acta Phys. Sin. 68 233301Google Scholar

    [17]

    Huber R, Wojtkowski M, Taira K, Fujimoto J G 2005 Opt. Express 13 3513Google Scholar

    [18]

    Huber R, Wojtkowski M, and Fujimoto J G 2006 Opt. Express 14 3225Google Scholar

    [19]

    Kranendonk L A, An X, Caswell A W, Herold R E, Sanders S T, Huber R, Fujimoto J G, Okura Y, Urata Y 2007 Opt. Express 15 15115Google Scholar

    [20]

    Caswell A W, Roy S, An X, Sanders S T, Schauer F R, Gord J R 2013 Appl. Opt. 52 2893Google Scholar

    [21]

    Ma L, Li X, Sanders S T, Caswell A W, Roy S R, Plemmons D H, Gord J R 2013 Opt. Express 21 1152Google Scholar

    [22]

    Zhou X, Liu X, Jeffries J B, Hanson R K 2003 Meas. Sci. Technol. 14 1459Google Scholar

    [23]

    符鹏飞, 超星, 侯凌云, 王振海, 孟庆慧 2019 工程热物理学报 40 2176Google Scholar

    Fu P F, Chao X, Hou L Y, Wang Z H, Meng Q H 2019 J. Eng. Thermophys. 40 2176Google Scholar

    [24]

    陶蒙蒙, 陶波, 余婷, 王振宝, 冯国斌, 叶锡生 2016 红外与激光工程 45 1205002Google Scholar

    Tao M M, Tao B, Yu T, Wang Z B, Feng G B, Ye X S 2016 Infrar. Laser Eng. 45 1205002Google Scholar

    [25]

    Tao M, Tao B, Hu Z, Feng G, Ye X, Zhao J 2017 Opt. Express 25 32386Google Scholar

    [26]

    陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军 2020 物理学报 69 034205Google Scholar

    Tao M M, Tao B, Ye J F, Shen Y L, Huang K, Ye X S, Zhao J 2020 Acta Phys. Sin. 69 034205Google Scholar

    [27]

    Jackson S D, King T A 1999 J. Lightwave Tehcnol. 17 948Google Scholar

    [28]

    Jackson S D, King T A 1998 Opt. Lett. 23 1462Google Scholar

    [29]

    Schulze G, Jirasek A, Yu M M L, Lim A, Turner R F B, Blades M W 2005 Appl. Spectrosc. 59 545Google Scholar

  • [1] 崔文文, 邢笑伟, 肖悦嘉, 刘文军. 高损伤阈值可饱和吸收体锁模脉冲光纤激光器的研究进展. 物理学报, 2022, 71(2): 024206. doi: 10.7498/aps.71.20212442
    [2] 张铭珂, 高振威, 高光珍, 江宇豪, 蔡廷栋. 基于二极管激光消光光谱的高温气体与颗粒物同时探测研究. 物理学报, 2022, 71(19): 193301. doi: 10.7498/aps.71.20220866
    [3] 戴川生, 董志鹏, 林加强, 姚培军, 许立新, 顾春. 基于纯水可饱和吸收体的1.9 μm波段被动调Q和锁模掺铥光纤激光器. 物理学报, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [4] 王前进, 孙鹏帅, 张志荣, 张乐文, 杨曦, 吴边, 庞涛, 夏滑, 李启勇. 混合气体测量中重叠吸收谱线交叉干扰的分离解析方法. 物理学报, 2021, 70(14): 144203. doi: 10.7498/aps.70.20210286
    [5] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [6] 袁浩, 朱方祥, 王金涛, 杨蓉, 王楠, 于洋, 闫培光, 郭金川. 基于铋可饱和吸收体的超快激光产生. 物理学报, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [7] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [8] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴. MnPS3可饱和吸收体被动锁模掺铒光纤激光器双波长激光. 物理学报, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [9] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军. 可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用. 物理学报, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [10] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [11] 令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚. 基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器. 物理学报, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [12] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 物理学报, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [13] 曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明. 基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测. 物理学报, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [14] 王敏锐, 蔡廷栋. 1.5μm处CO2与CO高温线强的实验分析与理论计算. 物理学报, 2015, 64(21): 213301. doi: 10.7498/aps.64.213301
    [15] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法. 物理学报, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [16] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏. 可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究. 物理学报, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [17] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [18] 周仁来, 鞠有伦, 杨超, 王巍, 王月珠. 一种对双包层大芯径光纤光栅反射率和纤芯折射率调制估算的方法. 物理学报, 2012, 61(24): 244205. doi: 10.7498/aps.61.244205
    [19] 阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王 敏, 陈 军. 可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量. 物理学报, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
    [20] 黄志坚, 孙军强, 黄德修. 快速与慢速饱和吸收体被动锁模掺铒光纤激光器的理论分析. 物理学报, 1998, 47(1): 9-18. doi: 10.7498/aps.47.9
计量
  • 文章访问数:  2988
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2022-03-01
  • 上网日期:  2022-03-04
  • 刊出日期:  2022-06-05

/

返回文章
返回