搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究

蓝丽娟 丁艳军 贾军伟 杜艳君 彭志敏

引用本文:
Citation:

可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究

蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏

Theoretical and experimental study of measuring gas temperature in vacuum environment using tunable diode laser absorption spectroscopy

Lan Li-Juan, Ding Yan-Jun, Jia Jun-Wei, Du Yan-Jun, Peng Zhi-Min
PDF
导出引用
  • 真空环境不仅会导致热电偶等温度传感器表面材料解吸,而且其传热机理也与常压不同,因此采用常压下校准和溯源的温度传感器测量真空环境下气体温度存在诸多不确定性问题. 为此,本文利用可调谐二极管激光吸收光谱技术(TDLAS)测量真空环境下气体温度,探索TDLAS温度测量技术在真空环境下的应用前景. 在模拟热真空实验过程中,首先将真空气室浸没于恒温槽中,然后利用TDLAS测量真空气室中气体温度,同时利用一等标准铂电阻测量恒温槽的温度. 试验结果表明:TDLAS和一等标准铂电阻测量得到的气体温度和恒温槽温度具有高度的一致性,两者之间的误差在恒温槽温度稳定时不超过0.2℃.
    Measuring the temperature in vacuum environment is more complex than in atmospheric environment. For example, high vacuum will cause the thermocouple sensor surface desorption, and the mechanism of heat transfer is also different. Therefore, there are some uncertainties if the thermocouple is used to measure the gas temperature in vacuum condition. In the present paper, tunable diode laser absorption spectroscopy (TDLAS) is employed to measure the gas temperature and also explore the application prospect of TDLAS temperature measurement technology in vacuum environment. During the thermal vacuum experiments, the vacuum gas cell is immersed in the thermostatic bath, and the gas temperature is determined by TDLAS. Meanwhile, a standard Pt-resistance is used to measure the thermostatic bath temperature. The results show that the temperatures of the gas and thermostatic bath are highly consistent with each other, and the difference between the two temperatures is less than 0.2 ℃ when the thermostatic bath is stable.
    • 基金项目: 国家自然科学基金(批准号:51206086,51176085)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51206086, 51176085).
    [1]

    Nabil M, Khodadadi J M 2013 Int. J. Heat Mass Trans. 67 301

    [2]

    Çakmak H M, Çetinkara H A, Kahraman S, Bayansal F, Tepe M, Gder H S, Çipiloğlu M A 2012 Superlattice Microst. 51 421

    [3]

    Zhou H J, Chen X M, Yang B, Li L, Dai Y N 2012 Chin. J. Vacuum Sci. Technol. 32 896 (in Chinese) [周厚军, 陈秀敏, 杨斌, 李亮, 戴永年 2012 真空科学与技术学报 32 896]

    [4]

    Lin M Y, Chen E T, Zhou B, Xu B 2006 Chin. J. Va-cuum Sci. Technol. 26 530 (in Chinese) [林美英, 陈儿同, 周冰, 徐波 2006 真空科学与技术学报 26 530]

    [5]

    Liu R, Zhou Z N, Yin Y L, Yang L, Zhang T L 2012 Thermochim. Acta 537 13

    [6]

    Liu Q 2006 Vacuum Cryogenic 12 238 (in Chinese) [刘强 2006 真空与低温 12 238]

    [7]

    Guo G 2009 Spacecraft Environment Engineering 26 33 (in Chinese) [郭赣 2009 航天器环境工程 26 33]

    [8]

    Peng Z M, Ding Y J, Zhai X D 2011 Acta Phys. Sin. 60 104702 (in Chinese) [彭志敏, 丁艳军, 翟晓东 2011 物理学报 60 104702]

    [9]

    Peng Z M, Ding Y J, Zhai X D, Yang Q S, Jiang Z L 2011 Chin. Phys. Lett. 28 044703

    [10]

    Cai T D, Jia H, Wang G S, Chen W D, Gao X M 2009 Sensor Actuat. A: Phys. 152 5

    [11]

    Farooq A, Jeffries J B, Hanson R K 2009 Appl. Phys. B 96 161

    [12]

    Teichert H, Fernholz T, Ebert V 2003 Appl. Opt. 42 2043

    [13]

    Li F, Yu X L, Gu H B, Li Z, Zhao Y, Ma L, Chen L H, Zhang X Y 2011 Appl. Opt. 50 6697

    [14]

    Liu X, Jeffries J B, Hanson R K, Hinckley K M, Woodmansee M A 2006 Appl. Phys. B 82 469

    [15]

    Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 物理学报 54 1927]

    [16]

    Farooq A, Jeffries J B, Hanson R K 2008 Appl. Phys. B 90 619

    [17]

    Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546

    [18]

    Peng Z M, Ding Y J, Che L, Yang Q S 2012 Opt. Express 20 11976

    [19]

    Che L, Ding Y J, Peng Z M, Li X H 2012 Chin. Phys. B 21 127803

    [20]

    Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503

    [21]

    Peng Z M, Ding Y J, Che L, Li X H, Zheng K J 2011 Opt. Express 19 23104

  • [1]

    Nabil M, Khodadadi J M 2013 Int. J. Heat Mass Trans. 67 301

    [2]

    Çakmak H M, Çetinkara H A, Kahraman S, Bayansal F, Tepe M, Gder H S, Çipiloğlu M A 2012 Superlattice Microst. 51 421

    [3]

    Zhou H J, Chen X M, Yang B, Li L, Dai Y N 2012 Chin. J. Vacuum Sci. Technol. 32 896 (in Chinese) [周厚军, 陈秀敏, 杨斌, 李亮, 戴永年 2012 真空科学与技术学报 32 896]

    [4]

    Lin M Y, Chen E T, Zhou B, Xu B 2006 Chin. J. Va-cuum Sci. Technol. 26 530 (in Chinese) [林美英, 陈儿同, 周冰, 徐波 2006 真空科学与技术学报 26 530]

    [5]

    Liu R, Zhou Z N, Yin Y L, Yang L, Zhang T L 2012 Thermochim. Acta 537 13

    [6]

    Liu Q 2006 Vacuum Cryogenic 12 238 (in Chinese) [刘强 2006 真空与低温 12 238]

    [7]

    Guo G 2009 Spacecraft Environment Engineering 26 33 (in Chinese) [郭赣 2009 航天器环境工程 26 33]

    [8]

    Peng Z M, Ding Y J, Zhai X D 2011 Acta Phys. Sin. 60 104702 (in Chinese) [彭志敏, 丁艳军, 翟晓东 2011 物理学报 60 104702]

    [9]

    Peng Z M, Ding Y J, Zhai X D, Yang Q S, Jiang Z L 2011 Chin. Phys. Lett. 28 044703

    [10]

    Cai T D, Jia H, Wang G S, Chen W D, Gao X M 2009 Sensor Actuat. A: Phys. 152 5

    [11]

    Farooq A, Jeffries J B, Hanson R K 2009 Appl. Phys. B 96 161

    [12]

    Teichert H, Fernholz T, Ebert V 2003 Appl. Opt. 42 2043

    [13]

    Li F, Yu X L, Gu H B, Li Z, Zhao Y, Ma L, Chen L H, Zhang X Y 2011 Appl. Opt. 50 6697

    [14]

    Liu X, Jeffries J B, Hanson R K, Hinckley K M, Woodmansee M A 2006 Appl. Phys. B 82 469

    [15]

    Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 物理学报 54 1927]

    [16]

    Farooq A, Jeffries J B, Hanson R K 2008 Appl. Phys. B 90 619

    [17]

    Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546

    [18]

    Peng Z M, Ding Y J, Che L, Yang Q S 2012 Opt. Express 20 11976

    [19]

    Che L, Ding Y J, Peng Z M, Li X H 2012 Chin. Phys. B 21 127803

    [20]

    Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503

    [21]

    Peng Z M, Ding Y J, Che L, Li X H, Zheng K J 2011 Opt. Express 19 23104

计量
  • 文章访问数:  2467
  • PDF下载量:  543
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-19
  • 修回日期:  2014-01-06
  • 刊出日期:  2014-04-05

可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究

  • 1. 清华大学热能系, 电力系统与发电设备控制与仿真国家重点实验室, 北京 100084;
  • 2. 北京东方计量测试研究所, 北京 100086
    基金项目: 

    国家自然科学基金(批准号:51206086,51176085)资助的课题.

摘要: 真空环境不仅会导致热电偶等温度传感器表面材料解吸,而且其传热机理也与常压不同,因此采用常压下校准和溯源的温度传感器测量真空环境下气体温度存在诸多不确定性问题. 为此,本文利用可调谐二极管激光吸收光谱技术(TDLAS)测量真空环境下气体温度,探索TDLAS温度测量技术在真空环境下的应用前景. 在模拟热真空实验过程中,首先将真空气室浸没于恒温槽中,然后利用TDLAS测量真空气室中气体温度,同时利用一等标准铂电阻测量恒温槽的温度. 试验结果表明:TDLAS和一等标准铂电阻测量得到的气体温度和恒温槽温度具有高度的一致性,两者之间的误差在恒温槽温度稳定时不超过0.2℃.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回