搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进波长调制光谱技术的高吸收度甲烷气体测量

李绍民 孙利群

引用本文:
Citation:

基于改进波长调制光谱技术的高吸收度甲烷气体测量

李绍民, 孙利群

Measurement of methane gas with high absorbance based on modified wavelength modulation spectroscopy

Li Shao-Min, Sun Li-Qun
PDF
HTML
导出引用
  • 本文对波长调制光谱(WMS)技术进行了改进, 并以其为基础测量了高吸收度的甲烷气体. WMS常被用于气体浓度测量, 其依赖于二次谐波幅值与气体浓度之间的线性关系, 但是传统的WMS技术只适用于气体吸收度远小于1的情况, 这是因为在传统WMS理论的推导中, 需要对朗伯比尔定律进行一阶近似, 而一阶近似仅在低吸收度下成立, 所以在高吸收度下二次谐波与气体浓度的线性关系不成立. 在本文的改进方案中, 不需要对朗伯比尔定律做任何近似处理. 将激光分为测量光与参考光两路, 测量光被待测气体充分吸收后由光电探测器收集光强信号, 参考光的光强信号不被吸收直接由另一个光电探测器直接探测, 两个光电探测器的输出信号经模数转换后传输至上位机, 上位机对两路信号均先取自然对数, 然后根据参考信号确定二次谐波的解调相位, 这样解调出来的二次谐波信号即使在高吸收度下也与气体的浓度保持线性关系. 本文介绍了传统WMS理论与改进后的WMS理论, 并分别测量了一系列浓度梯度的甲烷气体, 对比了传统WMS和改进WMS的实验结果, 证实了在高吸收度下, 传统WMS理论中的线性不再成立, 但改进的WMS仍能保证二次谐波与甲烷浓度之间的线性关系, 验证了改进方案的优势; 最后通过艾伦标准差分析, 得到该甲烷测量系统在平均时间103.6 s时稳定性达到最优, 对应的艾伦标准差为26.62×10–9分之一体积.
    In this paper, the wavelength modulation spectroscopy (WMS) technique is modified and used for measuring methane with large absorbance. The WMS has been frequently used for gas measurement and relies on the linear relationship between the second harmonic amplitude and the gas volume concentration. However, the conventional WMS technique is only applicable for the gas whose absorbance is much smaller than 1, which is because the first-order approximation of Lambert-Beer's law is required in the derivation of the traditional WMS theory, and the first-order approximation holds only at low absorbance, hence the linear relationship between the second harmonic and the gas concentration does not hold at large absorbance. In the modified WMS in this work, it is not necessary to make any approximation to Lambert-Beer's law. The measured light is absorbed by the gas to be measured and then collected by the photodetector. The reference light is directly detected by another photodetector without being absorbed. The output signals of the two photodetectors are transmitted to the computer after implementing analog-to-digital conversion. In this way, the demodulated second harmonic signal remains linear with the gas concentration even at large absorbance. In this work, the traditional WMS theory and the modified WMS theory are both introduced, and a series of methane gas with concentration gradients are measured separately. The experimental results of the traditional WMS and the modified WMS are compared with each other. It is confirmed that the linearity in the traditional WMS theory no longer holds under large absorbance, but the improved WMS can still guarantee the linear relationship between the second harmonic and the methane concentration, which verifies the advantages of the modified scheme. Finally, through Allan's standard deviation analysis, the stability of this methane measurement system reaches the optimal value at the average time of 103.6 s, and the corresponding Allan's standard deviation is 1/26.62×10–9 volume.
      通信作者: 孙利群, sunlq@mail.tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFF0109600)资助的课题.
      Corresponding author: Sun Li-Qun, sunlq@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFF0109600).
    [1]

    Lumbers B, Agar D W, Gebel J, Platte F 2022 Int. J. Hydrogen Energy 47 4265Google Scholar

    [2]

    Lumbers B, Barley J, Platte F 2022 Int. J. Hydrogen Energy 47 16347Google Scholar

    [3]

    Wikipedia contributors https://en.wikipedia.org/w/index.php?title=Methane&oldid=1103638016 [2022-9-1]

    [4]

    IPCC 2013 Climate Change 2013: The Physical Science Basis. (Cambridge: Cambridge University Press) pp164–167

    [5]

    Shindell D T, Faluvegi G, Koch D M, Schmidt G A, Unger N, Bauer S E 2009 Science 326 716Google Scholar

    [6]

    张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏 2015 物理学报 64 053301Google Scholar

    Zhang S F, Lan L J, Ding Y J, Jia J W, Peng Z M 2015 Acta Phys. Sin. 64 053301Google Scholar

    [7]

    阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 物理学报 54 1927Google Scholar

    Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927Google Scholar

    [8]

    丁武文, 孙利群, 衣路英 2017 物理学报 66 100702Google Scholar

    Ding W W, Sun L Q, Yi L Y 2017 Acta Phys. Sin. 66 100702Google Scholar

    [9]

    丁武文, 孙利群 2017 物理学报 66 120601Google Scholar

    Ding W W, Sun L Q 2017 Acta Phys. Sin. 66 120601Google Scholar

    [10]

    Ding W W, Sun L Q, Yi L Y 2016 Meas. Sci. Technol. 27 085202Google Scholar

    [11]

    He Q X, Dang P P, Liu Z W, Zheng C T, Wang Y D 2017 Opt. Quantum Electron. 49 115Google Scholar

    [12]

    Shemshad J 2015 Sens. Actuators, A 222 96Google Scholar

    [13]

    Zhang Z W, Chang J, Sun J C, Feng Y W, Sun H R, Zhang Q D, Fan Y M, Zhang Z F 2020 Appl. Opt. 59 8217Google Scholar

    [14]

    孙利群, 邹明丽, 王旋 2021 中国激光 48 1511001Google Scholar

    Sun L Q, Zou M L, W X 2021 Chin. J. Lasers 48 1511001Google Scholar

    [15]

    Kyle Owen, Farooq A 2014 Appl. Phys. B. 116 371

    [16]

    Lan L J, Ghasemifard H, Yuan Y, Hachinger S, Zhao X X, Bhattacharjee S, Bi X, Bai Y, Menzel A, Chen J 2020 Atmosphere 11 58Google Scholar

    [17]

    Geng J X, Lan L J, Luo Q W, Yang C H 2021 Proc. SPIE 11780, Global Intelligent Industry Conference Guangzhou, China, March 18, 2021 p117801V

    [18]

    Chao X, Jeffries J B, Hanson R K 2009 Meas. Sci. Technol. 20 115201Google Scholar

    [19]

    Chao X, Jeffries J B, Hanson R K 2012 Appl. Phys. B 106 987Google Scholar

    [20]

    Ku R T, Hinkley E D, Sample J O 1975 Appl. Opt. 14 854Google Scholar

    [21]

    李宁, 翁春生 2011 物理学报 60 070701Google Scholar

    Li N, Weng C S 2011 Acta Phys. Sin. 60 070701Google Scholar

    [22]

    王振, 杜艳君, 丁艳军, 彭志敏 2020 物理学报 69 064205Google Scholar

    Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Acta Phys. Sin. 69 064205Google Scholar

    [23]

    Upadhyay A, Chakraborty L A 2015 Opt. Lett. 40 4086Google Scholar

    [24]

    王飞, 黄群星, 李宁, 严建华, 池涌, 岑可法 2007 物理学报 56 3867Google Scholar

    Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 3867Google Scholar

    [25]

    Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546Google Scholar

    [26]

    Huang A, Cao Z, Zhao W S, Zhang H Y, Xu L J 2020 IEEE Trans. Instrum. Meas. 69 9087Google Scholar

    [27]

    Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia–Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev Y V, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2021 J. Quant. Spectrosc. Radiat. Transfer 277 107949

    [28]

    Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052Google Scholar

    [29]

    严恭敏, 李四海 2012 惯性仪器测试与数据分析 (北京: 国防工业出版社) 第159—160页

    Yan G M, Li S H 2012 Inertial Instrumentation Testing and Data Analysis (Beijing: National Defense Industry Press) pp159–160 (in Chinese)

  • 图 1  1653 nm附近处的甲烷吸收线型(P = 1 × 105 Pa, T = 296 K)

    Fig. 1.  Absorption profile of methane around 1653 nm (P = 1 × 105 Pa, T = 296 K).

    图 2  基于WMS技术测量甲烷气体的实验装置示意图

    Fig. 2.  Illustration of the WMS-based methane measuring system.

    图 3  WMS实验中甲烷的二次谐波信号示例

    Fig. 3.  Illustration of the 2nd harmonic of methane in the WMS experiment.

    图 4  WMS实验中甲烷的二次谐波幅值与甲烷浓度之间的关系

    Fig. 4.  Relationship between the amplitude of the 2nd harmonic of methane and the concentration of methane in the WMS experiment

    图 5  基于改进的WMS技术测量甲烷气体的实验装置示意图

    Fig. 5.  Illustration of the modified-WMS-based methane measuring system.

    图 6  参考通道波形示意图

    Fig. 6.  Illustration of the waveform of the reference channel.

    图 7  测量通道波形示意图

    Fig. 7.  Illustration of the waveform of the measurment channel.

    图 8  改进的WMS实验中甲烷的二次谐波信号示例

    Fig. 8.  Illustration of the 2nd harmonic of methane in the modified-WMS experiment.

    图 9  改进的WMS实验中甲烷的二次谐波幅值与浓度的关系

    Fig. 9.  Relationship between the amplitude of the 2nd harmonic of methane and the concentration of methane in the modified-WMS experiment.

    图 10  1000次连续测量中解算出的$ \xi $值的频率分布直方图

    Fig. 10.  Frequency histogram of the value of $ \xi $ calculated in 1000 continuous measurements.

    图 11  基于改进的WMS的甲烷测量系统的艾伦标准差分析

    Fig. 11.  Allan deviation analysis of the modified-WMS-based methane measurement system.

  • [1]

    Lumbers B, Agar D W, Gebel J, Platte F 2022 Int. J. Hydrogen Energy 47 4265Google Scholar

    [2]

    Lumbers B, Barley J, Platte F 2022 Int. J. Hydrogen Energy 47 16347Google Scholar

    [3]

    Wikipedia contributors https://en.wikipedia.org/w/index.php?title=Methane&oldid=1103638016 [2022-9-1]

    [4]

    IPCC 2013 Climate Change 2013: The Physical Science Basis. (Cambridge: Cambridge University Press) pp164–167

    [5]

    Shindell D T, Faluvegi G, Koch D M, Schmidt G A, Unger N, Bauer S E 2009 Science 326 716Google Scholar

    [6]

    张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏 2015 物理学报 64 053301Google Scholar

    Zhang S F, Lan L J, Ding Y J, Jia J W, Peng Z M 2015 Acta Phys. Sin. 64 053301Google Scholar

    [7]

    阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 物理学报 54 1927Google Scholar

    Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927Google Scholar

    [8]

    丁武文, 孙利群, 衣路英 2017 物理学报 66 100702Google Scholar

    Ding W W, Sun L Q, Yi L Y 2017 Acta Phys. Sin. 66 100702Google Scholar

    [9]

    丁武文, 孙利群 2017 物理学报 66 120601Google Scholar

    Ding W W, Sun L Q 2017 Acta Phys. Sin. 66 120601Google Scholar

    [10]

    Ding W W, Sun L Q, Yi L Y 2016 Meas. Sci. Technol. 27 085202Google Scholar

    [11]

    He Q X, Dang P P, Liu Z W, Zheng C T, Wang Y D 2017 Opt. Quantum Electron. 49 115Google Scholar

    [12]

    Shemshad J 2015 Sens. Actuators, A 222 96Google Scholar

    [13]

    Zhang Z W, Chang J, Sun J C, Feng Y W, Sun H R, Zhang Q D, Fan Y M, Zhang Z F 2020 Appl. Opt. 59 8217Google Scholar

    [14]

    孙利群, 邹明丽, 王旋 2021 中国激光 48 1511001Google Scholar

    Sun L Q, Zou M L, W X 2021 Chin. J. Lasers 48 1511001Google Scholar

    [15]

    Kyle Owen, Farooq A 2014 Appl. Phys. B. 116 371

    [16]

    Lan L J, Ghasemifard H, Yuan Y, Hachinger S, Zhao X X, Bhattacharjee S, Bi X, Bai Y, Menzel A, Chen J 2020 Atmosphere 11 58Google Scholar

    [17]

    Geng J X, Lan L J, Luo Q W, Yang C H 2021 Proc. SPIE 11780, Global Intelligent Industry Conference Guangzhou, China, March 18, 2021 p117801V

    [18]

    Chao X, Jeffries J B, Hanson R K 2009 Meas. Sci. Technol. 20 115201Google Scholar

    [19]

    Chao X, Jeffries J B, Hanson R K 2012 Appl. Phys. B 106 987Google Scholar

    [20]

    Ku R T, Hinkley E D, Sample J O 1975 Appl. Opt. 14 854Google Scholar

    [21]

    李宁, 翁春生 2011 物理学报 60 070701Google Scholar

    Li N, Weng C S 2011 Acta Phys. Sin. 60 070701Google Scholar

    [22]

    王振, 杜艳君, 丁艳军, 彭志敏 2020 物理学报 69 064205Google Scholar

    Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Acta Phys. Sin. 69 064205Google Scholar

    [23]

    Upadhyay A, Chakraborty L A 2015 Opt. Lett. 40 4086Google Scholar

    [24]

    王飞, 黄群星, 李宁, 严建华, 池涌, 岑可法 2007 物理学报 56 3867Google Scholar

    Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 3867Google Scholar

    [25]

    Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546Google Scholar

    [26]

    Huang A, Cao Z, Zhao W S, Zhang H Y, Xu L J 2020 IEEE Trans. Instrum. Meas. 69 9087Google Scholar

    [27]

    Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia–Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev Y V, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2021 J. Quant. Spectrosc. Radiat. Transfer 277 107949

    [28]

    Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052Google Scholar

    [29]

    严恭敏, 李四海 2012 惯性仪器测试与数据分析 (北京: 国防工业出版社) 第159—160页

    Yan G M, Li S H 2012 Inertial Instrumentation Testing and Data Analysis (Beijing: National Defense Industry Press) pp159–160 (in Chinese)

  • [1] 赵荣, 周宾, 刘奇, 戴明露, 汪步斌, 王一红. 基于激光吸收光谱技术的在线层析成像算法. 物理学报, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [2] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究. 物理学报, 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [3] 邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩. 三乙胺分子构象与红外光谱的理论研究. 物理学报, 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [4] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [5] 施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林. 特丁基对苯二酚的光谱及密度泛函研究. 物理学报, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [6] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [7] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究. 物理学报, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [8] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [9] 王安静, 方勇华, 李大成, 崔方晓, 吴军, 刘家祥, 李扬裕, 赵彦东. 面阵探测下的污染云团红外光谱仿真. 物理学报, 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [10] 丁武文, 孙利群. 相敏式激光啁啾色散光谱技术在高吸收度情况下的应用. 物理学报, 2017, 66(12): 120601. doi: 10.7498/aps.66.120601
    [11] 丁武文, 孙利群, 衣路英. 基于可调谐半导体激光器吸收光谱的高灵敏度甲烷浓度遥测技术. 物理学报, 2017, 66(10): 100702. doi: 10.7498/aps.66.100702
    [12] 刘江平, 黎军, 刘元琼, 雷海乐, 韦建军. 低温下氘分子红外吸收特性研究. 物理学报, 2014, 63(2): 023301. doi: 10.7498/aps.63.023301
    [13] 刘江平, 毕鹏, 雷海乐, 黎军, 韦建军. 近三相点温度低温固体氘的红外吸收谱. 物理学报, 2013, 62(16): 163301. doi: 10.7498/aps.62.163301
    [14] 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥. 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究. 物理学报, 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [15] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度. 物理学报, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [16] 孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋宝安, 沈祥, 徐铁峰. PbI2对远红外Te基硫系玻璃光学性能的影响. 物理学报, 2011, 60(11): 114212. doi: 10.7498/aps.60.114212
    [17] 刘晓东, 陶万军, 郑旭光, 萩原雅人, 孟冬冬, 张森林, 郭其新. 磁几何阻挫材料羟基氯化钴的中红外光谱特征. 物理学报, 2011, 60(3): 037803. doi: 10.7498/aps.60.037803
    [18] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [19] 毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐. 液氢平面低温冷冻靶的红外吸收谱. 物理学报, 2010, 59(11): 7531-7534. doi: 10.7498/aps.59.7531
    [20] 凌志华. 垂直排列液晶盒中反铁电液晶TFMHxPOCBC-D2偏振红外光谱研究. 物理学报, 2001, 50(2): 227-232. doi: 10.7498/aps.50.227
计量
  • 文章访问数:  5804
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-01
  • 修回日期:  2022-09-19
  • 上网日期:  2022-12-30
  • 刊出日期:  2023-01-05

/

返回文章
返回