搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固体火箭羽流红外辐射特征预测的多相态Al2O3模型

张立功 白璐 李金录 郭立新

引用本文:
Citation:

固体火箭羽流红外辐射特征预测的多相态Al2O3模型

张立功, 白璐, 李金录, 郭立新

Multi-phase state Al2O3 Model for Missile Plume Infrared Radiation Signature Prediction

ZHANG Ligong, LU Bai, LI Jinlu, GUO Lixin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 含铝固体推进剂以其可靠性、耐久性在战略战术导弹中得到广泛应用。作为被动探测的主要手段,准确识别排气羽流的红外辐射特征有助于快速预警和跟踪。本文基于高温羽流环境下燃烧产物Al2O3晶体结构的变化,提出了含多相态Al2O3的固体火箭羽流辐射计算模型。采用球谐离散坐标法求解两相羽流的光谱辐射特性。与忽略Al2O3颗粒相变的传统模型相比,新模型与实验测量数据结果更加吻合,进一步提高了计算精度。利用该模型研究了不同含铝比例的羽流红外光谱辐射特性。结果表明,在1.7-2.0μm范围内,传统模型明显高估了低含铝情况的羽流辐射结果,最大差异达67.2%。在2.5-3.0μm范围内,随着含铝比例的增加,两种模型之间的差异逐渐减小;在4.0-4.5μm范围内的颗粒相变对整体结果影响不明显,平均相差7%左右。所以有必要通过考虑羽流中颗粒的相态变化实现辐射特性的精确预测。本文的研究结果可为固体火箭发动机的准确检测和识别提供理论依据和参考。
    Aluminum-doped propellants are widely used in strategic tactical missiles for their reliability, durability and adaptability. As the main means of passive detection, the accurate identification of infrared radiation characteristics of exhaust plumes is helpful for rapid warning and tracking. Aiming at the defect that the traditional model ignores the evolution of the crystalline phase of the particles, this paper proposes a radiation calculation model for the solid rocket plume containing Al2O3 in a multi-phase state, based on the change of the crystal structure of Al2O3 in a high temperature environment. The radiative transfer equation of the gas-solid two-phase plume is solved by using Spherical Harmonic Discrete Ordinate Method (SHDOM). Compared with the classical method of simplifying the Al2O3 particles as single liquid phase particle, the model is more consistent with the results of experimental measurement data, which further improves the calculation accuracy. The infrared spectral radiation characteristics of plumes with different aluminum doping ratios are investigated using the model. The results show that the plume radiation in the near-infrared band is significantly overestimated by the calculation results of the classical method at low aluminum doping ratios. At 1.7-2.0μm, the maximum decrease is 67.2%; in the 2.5-3.0μm, the difference between the two methods decreases from 21.6% to 3.6% with increasing aluminum doping rate; and the particles phase transition in the 4.0-4.5μm does not have much influence on the overall results, whose difference is about 7% on average. Therefore, it is necessary to accurately predict the radiation characteristics by considering the phase change of particles in the plume. The results contribute to the accurate detection and identification of solid rocket motors.
  • [1]

    Lucas M, Brotton S J, Min A, Pantoya M L, Kaiser R I 2019 J. Phys. Chem. Lett. 10 5756

    [2]

    Zhang W, Fan Z, Shu Y, Ren P, Liu P J, Li L K, Ao W 2024 Aerosp. Sci. Technol. 149 109164

    [3]

    Lee Y R, Lee J W, Shin C M, Kim J W, Myong R 2022 J. Aircr. 59 1320

    [4]

    Shi L, Zhao G J, Yang Y Y, Gao D, Qin F, Wei X G, He G Q 2019 Prog. Aeronaut. Sci. 107 30

    [5]

    Orlandi O, Plaud M, Godfroy F, Larrieu S, Cesco N 2019 Acta Astronaut. 158 470

    [6]

    Liu M, Xiong L, Huang H, Cai J, Zhao D, Li S 2024 Therm. Sci. Eng. Prog. 49 102505

    [7]

    Nelson H F 1984 J. Spacecr. Rockets 21 425

    [8]

    Laredo D, Netzer D W 1993 J. Quant. Spectrosc. Radiat. Transfer 50 511

    [9]

    Alexeenko A, Gimelshein N, Levin D, et al. 2002 J. Thermophys. Heat Transfer 16 50

    [10]

    Boischot A, Roblin A, Hespel L, Dubois I, Prevot P, Smithson T. 2006 Targets and Backgrounds XII: Characterization and Representation p195

    [11]

    Cai G, Zhu D, Zhang X 2007 Aerosp. Sci. Technol. 11 473

    [12]

    Feng S J, Nie W S, Xie Q F, Duan L W 2007 39th AIAA Thermophysics Conference p4415

    [13]

    Shen W T, Dong C, Zhu D Q, Cai G B 2012 J. Aerosp. Power 27 1874(in Chinese)[申文涛,董超,朱定强,蔡国飙 2012 航空动力学报 27 1874]

    [14]

    Zhang X Y, Chen H 2016 Chin. J. Aeronaut. 29 924

    [15]

    Rialland V, Guy A, Gueyffier D, Perez P, Roblin A, Smithson T 2016 Journal of Physics: Conference Series p12

    [16]

    Zhang D M, Bai L, Wang Y K, Lv Q, Zhang T J 2022 Infrared Phys. Technol. 122 104054

    [17]

    Zhang T, Niu Q L, Liu Y F, Gao W Q, Dong S K 2024 Acta Armamentarii 45 2228(in Chinese)[张腾,牛青林,柳云峰,高文强,董士奎 2024 兵工学报 45 2228]

    [18]

    Bao X D, Yu X L, Wang Z H, Mao H X, Liu D 2020 Procedia Computer Science 174 645

    [19]

    Bityukov V K, Petrov V A 2013 Appl. Phys. Res. 5 51

    [20]

    Plastinin Y, Sipatchev H, Karabadzhak G, Khmelinin B, Khlebnikov A, Shishkin Y 2000 38th Aerospace Sciences Meeting and Exhibit p735

    [21]

    Anfimov N, Karabadyak G, Khmelinin B, Plastinin Y, Rodionov A 1993 28th Thermophysics Conference p2818

    [22]

    Xu Y Y, Lu B, Li J Y, Li J L, Gao P H 2020 Opt Express 28 17

    [23]

    Li J Y, Bai L, Wu Z S, Guo L X, Gong Y 2017 J. Quant. Spectrosc. Radiat. Transfer 202 233

    [24]

    Evans K F 1998 J. Atmos. Sci. 55 429

    [25]

    Malkmus W 1967 J. Opt. Soc. Am. 57 323

    [26]

    Young S J 1977 J. Quant. Spectrosc. Radiat. Transfer 18 1

    [27]

    Rothman L S, Gordon I, Barber R, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 2139

    [28]

    Hulst H C, van de Hulst HC 1981 Light scattering by small particles (Courier Corporation) P4-12

    [29]

    Bohren CF, Huffman DR 2008 Absorption and scattering of light by small particles (John Wiley & Sons) p83-129

    [30]

    Gossé S, Sarou K V, Véron E, Millot F, Rifflet J C, Simon P 2003 36th AIAA Thermophysics Conference p3649

    [31]

    Hespel L, Delfour A, Gosse S, Millot F 2003 36th AIAA Thermophysics Conference p3650

    [32]

    Dombrovsky L A, Baillis D 2010 Thermal radiation in disperse systems: an engineering approach (New York: Begell House) p64-221

    [33]

    Mishchenko M I 2018 OSA Continuum 1 243

    [34]

    Bao X D, Yu X L, Wang Z H, Mao H X, Liu D, Xiao Z H 2021 J. Propul. Technol. 42 3(in Chinese) [包醒东, 余西龙, 王振华, 毛宏霞,肖志河 2021 推进技术 42 569]

    [35]

    Avital G, Cohen Y, Gamss L, Kanelbaum, Y, Macales J, Trieman B, Yaniv S, Lev M, Stricker J, Sternlieb A 2001 J. Thermophys. Heat Transfer 15 377

    [36]

    Hermsen R 1981 J. Spacecr. Rockets 18 483

  • [1] 王明军, 于记华, 白亮亮, 周熠铭. 不同相对湿度条件下复杂外混合气溶胶粒子群的光学特性. 物理学报, doi: 10.7498/aps.74.20241140
    [2] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, doi: 10.7498/aps.72.20230896
    [3] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究. 物理学报, doi: 10.7498/aps.71.20220011
    [4] 邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩. 三乙胺分子构象与红外光谱的理论研究. 物理学报, doi: 10.7498/aps.71.20220123
    [5] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, doi: 10.7498/aps.71.20220124
    [6] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, doi: 10.7498/aps.68.20190903
    [7] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究. 物理学报, doi: 10.7498/aps.68.20191510
    [8] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, doi: 10.7498/aps.67.20181401
    [9] 王安静, 方勇华, 李大成, 崔方晓, 吴军, 刘家祥, 李扬裕, 赵彦东. 面阵探测下的污染云团红外光谱仿真. 物理学报, doi: 10.7498/aps.66.114203
    [10] 徐婷婷, 李毅, 陈培祖, 蒋蔚, 伍征义, 刘志敏, 张娇, 方宝英, 王晓华, 肖寒. 基于AZO/VO2/AZO结构的电压诱导相变红外光调制器. 物理学报, doi: 10.7498/aps.65.248102
    [11] 王小伍, 徐海红. 多元醇二元体系固-固相变机理的研究. 物理学报, doi: 10.7498/aps.63.136501
    [12] 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥. 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究. 物理学报, doi: 10.7498/aps.62.156103
    [13] 刘晓东, 陶万军, 郑旭光, 萩原雅人, 孟冬冬, 张森林, 郭其新. 磁几何阻挫材料羟基氯化钴的中红外光谱特征. 物理学报, doi: 10.7498/aps.60.037803
    [14] 王小伍, 徐海红. 多元醇固—固相变机理的研究. 物理学报, doi: 10.7498/aps.60.030507
    [15] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, doi: 10.7498/aps.60.096105
    [16] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用. 物理学报, doi: 10.7498/aps.58.29
    [17] 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, L. Gerward, 蒋建中. 高压下纳米锗的状态方程与相变. 物理学报, doi: 10.7498/aps.56.6521
    [18] 石筑一, 吉世印. 微观核芯+两准粒子模型中热核148—158Sm的比热容及其相变. 物理学报, doi: 10.7498/aps.52.42
    [19] 梁子长, 金亚秋. 一层非球形粒子散射的标量辐射传输迭代解的求逆. 物理学报, doi: 10.7498/aps.51.2239
    [20] 凌志华. 垂直排列液晶盒中反铁电液晶TFMHxPOCBC-D2偏振红外光谱研究. 物理学报, doi: 10.7498/aps.50.227
计量
  • 文章访问数:  42
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-12

/

返回文章
返回