搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器学习回归不确定性揭示自驱动活性粒子的群集相变

郭唯琛 艾保全 贺亮

引用本文:
Citation:

机器学习回归不确定性揭示自驱动活性粒子的群集相变

郭唯琛, 艾保全, 贺亮

Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty

Guo Wei-Chen, Ai Bao-Quan, He Liang
PDF
HTML
导出引用
  • 本文发展了一种利用逆统计问题中的回归不确定性来自动探索物质相的新方法. 以自驱动活性粒子的群集相变为例, 展示了对于这一类涉及非平衡、非晶格、一阶相变等复杂要素的多体系统, 在训练人工神经网络处理其中的逆统计问题回归任务, 成功重构出系统的噪声强度这一参数之后, 回归结果的不确定性关于实际噪声强度的分布具有非平庸的规律性, 可用于揭示该系统中的群集相变, 并自动提取相变的临界噪声强度. 本文还与两种基于神经网络分类能力的常见方法进行直接对比, 讨论了它们的异同和各自特点. 结果表明, 本文发展的新方法不仅具有使用效率较高和所需预设的物理知识较少等实用优势, 而且更有在理论层面较为自然地与传统物理概念建立联系的可能性, 对于跨领域的不同物理系统都有良好的通用性和有效性.
    We develop the neural network based “learning from regression uncertainty” approach for the automatic detection of phases of matter in nonequilibrium active systems. Taking the flocking phase transition of self-propelled active particles described by the Vicsek model for example, we find that after training a neural network for solving the inverse statistical problem, i.e. for performing the regression task of reconstructing the noise level from given samples of such a nonequilibrium many-body complex system’s steady state configurations, the uncertainty of regression results obtained by the well-trained network can actually be utilized to reveal possible phase transitions in the system under study. The noise level dependence of regression uncertainty is assumed to be in a non-trivial M-shape, and its valley appears at the critical point of the flocking phase transition. By directly comparing this regression-based approach with the widely-used classification-based “learning by confusion” and “learning with blanking” approaches, we show that our approach has practical effectiveness, efficiency, good generality for various physical systems across interdisciplinary fields, and a greater possibility of being interpretable via conventional notions of physics. These approaches can complement each other to serve as a promising generic toolbox for investigating rich critical phenomena and providing data-driven evidence on the existence of various phase transitions, especially for those complex scenarios associated with first-order phase transitions or nonequilibrium active systems where traditional research methods in physics could face difficulties.
      通信作者: 艾保全, aibq@scnu.edu.cn ; 贺亮, liang.he@scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12275089, 12075090)、广东省自然科学基金(批准号: 2023A1515012800, 2022A1515010449)和科技部重点研发计划(批准号: 2022YFA1405304)资助的课题.
      Corresponding author: Ai Bao-Quan, aibq@scnu.edu.cn ; He Liang, liang.he@scnu.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant Nos. 12275089, 12075090), the Basic and Applied Research Foundation of Guangdong Province, China (Grant Nos. 2023A1515012800, 2022A1515010449), and the National Key Research and Development Program of China (Grant No. 2022YFA1405304).
    [1]

    Melko R G, Carrasquilla J 2017 Nat. Phys. 13 431Google Scholar

    [2]

    van Nieuwenburg E P L, Liu Y H, Huber S D 2017 Nat. Phys. 13 435Google Scholar

    [3]

    Guo W C, Ai B Q, He L 2021 EPL 136 48002Google Scholar

    [4]

    Venderley J, Khemani V, Kim E A 2018 Phys. Rev. Lett. 120 257204Google Scholar

    [5]

    Beach M J S, Golubeva A, Melko R G 2018 Phys. Rev. B 97 045207Google Scholar

    [6]

    Lee S S, Kim B J 2019 Phys. Rev. E 99 043308Google Scholar

    [7]

    Ch’ng K, Carrasquilla J, Melko R G, Khatami E 2017 Phys. Rev. X 7 031038

    [8]

    Broecker P, Carrasquilla J, Melko R G, Trebst S 2017 Sci. Rep. 7 1Google Scholar

    [9]

    Carrasquilla J, 2020 Adv. Phys. X 5 1797528

    [10]

    Yu L W, Zhang S Y, Shen P X, Deng D L 2023 Fundamental Research (In Press

    [11]

    Rem B S, Käming N, Tarnowski M, Asteria L, Fläschner N, Becker C, Sengstock K, Weitenberg C 2019 Nat. Phys. 15 917Google Scholar

    [12]

    Gökmen D E, Ringel Z, Huber S D, Koch-Janusz M 2021 Phys. Rev. Lett. 127 240603Google Scholar

    [13]

    Gökmen D E, Ringel Z, Huber S D, Koch-Janusz M 2021 Phys. Rev. E 104 064106

    [14]

    Miles C, Bohrdt A, Wu R, Chiu C, Xu M, Ji G, Greiner M, Weinberger K Q, Demler E, Kim E A 2021 Nat. Commun. 12 3905Google Scholar

    [15]

    Nguyen H C, Zecchina R, Berg J 2017 Adv. Phys. 66 197Google Scholar

    [16]

    Udrescu S M, Tegmark M 2021 Phys. Rev. E 103 043307

    [17]

    Liu Z, Tegmark M 2022 Phys. Rev. Lett. 128 180201Google Scholar

    [18]

    Liu Z, Tegmark M 2021 Phys. Rev. Lett. 126 180604Google Scholar

    [19]

    Udrescu S M, Tegmark M 2020 Sci. Adv. 6 eaay2631Google Scholar

    [20]

    Guo W C, He L 2023 New J. Phys. 25 083037

    [21]

    Binder K 1987 Rep. Prog. Phys. 50 783Google Scholar

    [22]

    Falkovich G, Gawȩdzki K, Vergassola M 2001 Rev. Mod. Phys. 73 913Google Scholar

    [23]

    Jarzynski C 2015 Nat. Phys. 11 105Google Scholar

    [24]

    Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O 1995 Phys. Rev. Lett. 75 1226Google Scholar

    [25]

    Toner J, Tu Y, Ramaswamy S 2005 Ann. Phys. 318 170Google Scholar

    [26]

    Grégoire G, Chaté H 2004 Phys. Rev. Lett. 92 025702Google Scholar

    [27]

    Chaté H, Ginelli F, Grégoire G, Raynaud F 2008 Phys. Rev. E 77 046113Google Scholar

    [28]

    He K, Zhang X, Ren S, Sun J 2016 Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Las Vegas, USA, June 27–30, 2016 p770

    [29]

    Nguyen H C, Berg J 2012 Phys. Rev. Lett. 109 050602Google Scholar

    [30]

    Jo J, Hoang D T, Periwal V 2020 Phys. Rev. E 101 032107

  • 图 1  数值模拟生成的对应于不同噪声强度$ \eta $的典型样本. 样本中的每个圆形标记表示二维空间中的一个自驱动粒子, 其空间分布表示自驱动粒子的瞬时空间分布, 其颜色分布表示自驱动粒子的运动方向的瞬时角度分布. 此处作为示例的样本中, 左边的5个样本处于群集相, 最右边的样本处于无序相

    Fig. 1.  Typical samples corresponding to different noise levels that are generated by numerical simulations. In every sample, each of the circular markers represents a single self-propelled particle in the two-dimensional space, with their spatial distribution representing the instantaneous spatial distribution of self-propelled particles, and their color distribution representing the instantaneous angular distribution of directions of motion of these self-propelled particles. Among the samples shown here for instance, the five samples in the left are in the flocking phase, and the rightmost one is in the disordered phase.

    图 2  自驱动活性粒子系统中的ISP (a) 系统的群速度$ \bar v $关于噪声强度$ \eta $的依赖关系, $ \bar v $$ {\eta _{\text{c}}} = {0}{.626} \pm {0}{.006} $的突变表明系统在该噪声强度处发生一阶相变; (b)训练完成的ANN给出的重构噪声强度$ {\eta _{\text{R}}} $关于实际噪声强度$ \eta $的依赖关系, 误差棒表示回归不确定性$ U(\eta ) $, 对角线表示理想的回归结果$ {\eta _{\text{R}}}{=}\eta $

    Fig. 2.  Inverse statistical problem in a self-propelled active particle system: (a) Noise level dependence of the system’s global group velocity, whose jump at $ {\eta _{\text{c}}} = {0}{.626} \pm {0}{.006} $ characterizes the first-order flocking phase transition; (b) noise level dependence of the reconstructed noise level predicted by the well-trained ANN. The error bars represent the regression uncertainty $ U(\eta ) $, and the diagonal line represent the ideal regression result $ {\eta _{\text{R}}}{=}\eta $.

    图 3  三种机器学习方法揭示自驱动活性粒子的群集相变 (a) 基于回归不确定性的LFRU方法; (b) “混淆法”; (c) “留白法”

    Fig. 3.  Revealing the flocking phase transition of self-propelled active particles via applying three different machine learning approaches: (a) The LFRU approach; (b) the “learning by confusion” approach; (c) the “learning with blanking” approach.

  • [1]

    Melko R G, Carrasquilla J 2017 Nat. Phys. 13 431Google Scholar

    [2]

    van Nieuwenburg E P L, Liu Y H, Huber S D 2017 Nat. Phys. 13 435Google Scholar

    [3]

    Guo W C, Ai B Q, He L 2021 EPL 136 48002Google Scholar

    [4]

    Venderley J, Khemani V, Kim E A 2018 Phys. Rev. Lett. 120 257204Google Scholar

    [5]

    Beach M J S, Golubeva A, Melko R G 2018 Phys. Rev. B 97 045207Google Scholar

    [6]

    Lee S S, Kim B J 2019 Phys. Rev. E 99 043308Google Scholar

    [7]

    Ch’ng K, Carrasquilla J, Melko R G, Khatami E 2017 Phys. Rev. X 7 031038

    [8]

    Broecker P, Carrasquilla J, Melko R G, Trebst S 2017 Sci. Rep. 7 1Google Scholar

    [9]

    Carrasquilla J, 2020 Adv. Phys. X 5 1797528

    [10]

    Yu L W, Zhang S Y, Shen P X, Deng D L 2023 Fundamental Research (In Press

    [11]

    Rem B S, Käming N, Tarnowski M, Asteria L, Fläschner N, Becker C, Sengstock K, Weitenberg C 2019 Nat. Phys. 15 917Google Scholar

    [12]

    Gökmen D E, Ringel Z, Huber S D, Koch-Janusz M 2021 Phys. Rev. Lett. 127 240603Google Scholar

    [13]

    Gökmen D E, Ringel Z, Huber S D, Koch-Janusz M 2021 Phys. Rev. E 104 064106

    [14]

    Miles C, Bohrdt A, Wu R, Chiu C, Xu M, Ji G, Greiner M, Weinberger K Q, Demler E, Kim E A 2021 Nat. Commun. 12 3905Google Scholar

    [15]

    Nguyen H C, Zecchina R, Berg J 2017 Adv. Phys. 66 197Google Scholar

    [16]

    Udrescu S M, Tegmark M 2021 Phys. Rev. E 103 043307

    [17]

    Liu Z, Tegmark M 2022 Phys. Rev. Lett. 128 180201Google Scholar

    [18]

    Liu Z, Tegmark M 2021 Phys. Rev. Lett. 126 180604Google Scholar

    [19]

    Udrescu S M, Tegmark M 2020 Sci. Adv. 6 eaay2631Google Scholar

    [20]

    Guo W C, He L 2023 New J. Phys. 25 083037

    [21]

    Binder K 1987 Rep. Prog. Phys. 50 783Google Scholar

    [22]

    Falkovich G, Gawȩdzki K, Vergassola M 2001 Rev. Mod. Phys. 73 913Google Scholar

    [23]

    Jarzynski C 2015 Nat. Phys. 11 105Google Scholar

    [24]

    Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O 1995 Phys. Rev. Lett. 75 1226Google Scholar

    [25]

    Toner J, Tu Y, Ramaswamy S 2005 Ann. Phys. 318 170Google Scholar

    [26]

    Grégoire G, Chaté H 2004 Phys. Rev. Lett. 92 025702Google Scholar

    [27]

    Chaté H, Ginelli F, Grégoire G, Raynaud F 2008 Phys. Rev. E 77 046113Google Scholar

    [28]

    He K, Zhang X, Ren S, Sun J 2016 Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Las Vegas, USA, June 27–30, 2016 p770

    [29]

    Nguyen H C, Berg J 2012 Phys. Rev. Lett. 109 050602Google Scholar

    [30]

    Jo J, Hoang D T, Periwal V 2020 Phys. Rev. E 101 032107

  • [1] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为研究. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241581
    [2] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别. 物理学报, 2025, 74(1): 1-8. doi: 10.7498/aps.74.20241458
    [3] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [4] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [5] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [6] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 物理学报, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [7] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [8] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [9] 罗启睿, 沈一凡, 罗孟波. 高分子塌缩相变和临界吸附相变的计算机模拟和机器学习. 物理学报, 2023, 72(24): 240502. doi: 10.7498/aps.72.20231058
    [10] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [11] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [12] 刘妮, 张小芳, 梁九卿. 双光腔光机械系统的动力学相变和选择性能量交换. 物理学报, 2021, 70(14): 140301. doi: 10.7498/aps.70.20210178
    [13] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [14] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法. 物理学报, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [15] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [16] 刘妮, 黄珊, 李军奇, 梁九卿. 有限温度下腔光机械系统中N个二能级原子的相变和热力学性质. 物理学报, 2019, 68(19): 193701. doi: 10.7498/aps.68.20190347
    [17] 贾树芳, 梁九卿. 单模光腔中N个二能级原子系统的有限温度特性和相变. 物理学报, 2015, 64(13): 130505. doi: 10.7498/aps.64.130505
    [18] 张晋鲁, 李玉强, 赵兴宇, 黄以能. 用Weiss分子场理论对有外电场时铁电体系相变特征的研究. 物理学报, 2012, 61(14): 140501. doi: 10.7498/aps.61.140501
    [19] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [20] 王震遐, 王 森, 胡建刚, 俞国军. 多壁碳纳米管在循环相变过程中结构变化初探. 物理学报, 2005, 54(9): 4263-4268. doi: 10.7498/aps.54.4263
计量
  • 文章访问数:  2331
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-07-16
  • 上网日期:  2023-08-08
  • 刊出日期:  2023-10-20

/

返回文章
返回