搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可形变自驱动粒子在不对称周期管中的定向输运

郭瑞雪 艾保全

引用本文:
Citation:

可形变自驱动粒子在不对称周期管中的定向输运

郭瑞雪, 艾保全

Directed transport of deformable self-propulsion particles in an asymmetric periodic channel

Guo Rui-Xue, Ai Bao-Quan
PDF
HTML
导出引用
  • 粒子的随机运动被整流为定向运动是非平衡统计物理的重要研究内容. 尽管如此, 在活性粒子整流的研究中, 粒子通常被视为刚性的. 然而, 在软物质中, 粒子通常具有可变形的性质. 本文重点探讨了可形变自驱动粒子在非对称周期通道中的定向运输行为. 由于这些粒子具有可变形的特性, 它们可以通过比自身小的通道. 本文通过数值计算发现, 可形变自驱动粒子能够打破热力学平衡, 在空间不对称的条件下产生定向运动. 粒子的集体运动方向完全由通道的不对称性决定. 本文还发现, 增加自驱动速度和粒子软化都能促进粒子的整流, 而增大密度和旋转扩散则会阻碍粒子的定向运动. 本文的研究成果有助于理解可形变粒子在受限结构中的定向运动行为, 并为相关软物质马达的实验研究提供理论支持.
    Molecular motor can effectively convert chemical energy into mechanical energy in living organisms, and its research is currently at the forefront of study in biology and physics. The dynamic process of its guided movement, along with the crucial role they play in intra-cellular material transport, has significantly aroused the interest of many researchers. Theoretical and experimental researches have allowed detailed examinations of the motion attributes of these molecular motors. The Brownian ratchet model important. It provides an illustration of a non-equilibrium system that transforms thermal fluctuation into guided transport by utilizing temporal or spatial asymmetry. The mechanism has been extensively explored and studied across fields including physics, biology and nanotechnology. Investigations into a variety of ratchets and identification of optimum conditions contribute to a deeper understanding of guided Brownian particle transport.Preceding studies on ratchet systems largely concentrated on the rectification motions of diverse types of particles-active, polar and chiral-in asymmetric structures. However, the transport of deformable particles in asymmetric channel has not been examined relatively. Particles in soft material systems such as cell monolayer, tissue, foam, and emulsion are frequently deformable. The shape deformation of these soft particles significantly affects the system’s dynamic behavior. Thus, understanding the guided transport of these deformable particles within a confined structure is crucial.In order to explain this problem more clearly, we numerically simulate the guided transportation of active, deformable particles within a two-dimensional, periodic, asymmetric channel. We identify the factors that influence the transport of these particles within a confined structure. The main feature of the deformable particle model is that the particle’s shape is characterized by multiple degree of freedom. For active deformable particles, self-propulsion speed disrupts thermodynamic equilibrium, leading to guided transport in spatially asymmetric condition. Our findings demonstrate that a particle’s direction of movement is entirely determined by the channel's asymmetric parameter, and it tends to be attracted towards increased stability. Augmenting particle self-propulsion speed and particle softness can facilitate ratchet transport. When the self-propulsion speed v0 is large, the particle’s tensile effect becomes more apparent, and particle softening significantly enhances directed transport. In contrast, an increase in density and rotational diffusion can slow particle rectification. Increased density can obstruct particles, making channel passage more difficult. Elevated rotational diffusion reduces persistence length, challenging particle transition through channels. With constant density, a greater number of particles will also encourage rectification. These research findings offer a valuable insight into the transportation behaviors of deformable particles in a confined structure. They also deliver crucial theoretical support for applicable experiments in the field of soft matter.
      通信作者: 艾保全, aibq@scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12075090)和广东省自然科学基金(批准号: 2022A1515010449)资助的课题.
      Corresponding author: Ai Bao-Quan, aibq@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12075090) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2022A1515010449).
    [1]

    Xie P 2010 Int. J. Biol. Sci. 6 665Google Scholar

    [2]

    Browne W, Feringa B 2006 Nat. Nanotechnol. 1 25Google Scholar

    [3]

    Jülicher F, Ajdari A, Prost J 1997 Rev. Mod. Phys. 69 1269Google Scholar

    [4]

    刘艳艳, 孙佳明, 范黎明, 高天附, 郑志刚 2023 物理学报 72 040501Google Scholar

    Liu Y Y, Sun J M, Fan L M, Gao T F, Zheng Z G 2023 Acta Phys. Sin. 72 040501Google Scholar

    [5]

    Rice S, Lin A W, Safer D, Hart C L, Naber N, Carragher B O, Cain S M, Pechatnikova E, Wilson-Kubalek E M, Whittaker M, Pate E, Cooke R, Taylor E W, Milligan R A, Vale R D 1999 Nature 402 778Google Scholar

    [6]

    Reimann P 2002 Phys. Rep. 361 57Google Scholar

    [7]

    Ros A, Eichhorn R, Duong T, Regtmeier J, Reimann P, Anselmetti D 2005 Nature 436 928Google Scholar

    [8]

    Gao T F, Chen J C 2009 J. Phys. A Math. Theor. 42 065002Google Scholar

    [9]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106Google Scholar

    [10]

    Gao T F, Liu F S, Chen J C 2012 Chin. Phys. B 21 020502Google Scholar

    [11]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701Google Scholar

    [12]

    Parrondo J M R, De Cisneros B J 2002 Appl. Phys. A 75 179Google Scholar

    [13]

    Luo Y H, Zeng C H, Ai B Q 2020 Phys. Rev. E 102 042114Google Scholar

    [14]

    He Y F, Ai B Q, Dai C X, Song C, Wang R Q, Sun W T, Liu F C, Feng Y 2020 Phys. Rev. Lett. 124 075001Google Scholar

    [15]

    Li Y Y, Ghosh P K, Marchesoni F, Li B W 2014 Phys. Rev. E 90 062301

    [16]

    Mateos L J 2000 Phys. Rev. Lett. 84 258Google Scholar

    [17]

    Ai B Q 2017 Phys. Rev. E 96 012131Google Scholar

    [18]

    Lau B, Kedem O, Ratner M A, Weiss E A 2016 Phys. Rev. E 93 062128Google Scholar

    [19]

    Sandor C, Libal A, Reichhardt C, Olson Reichhardt C J 2017 Phys. Rev. E 95 032606Google Scholar

    [20]

    Astumian R N, Bier M 1994 Phys. Rev. Lett. 72 1766Google Scholar

    [21]

    Liao J J, Zhu W J, Ai B Q 2018 Phys. Rev. E 97 062151Google Scholar

    [22]

    Mei D, Xie C W, Zhang L 2003 Phys. Rev. E 68 051102Google Scholar

    [23]

    de Souza Silva C C, Van de Vondel J, Morelle M, Moshchalkov V V 2006 Nature 440 651Google Scholar

    [24]

    Derenyi I, Vicsek T 1995 Phys. Rev. Lett. 75 374Google Scholar

    [25]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701Google Scholar

    [26]

    吕明涛, 延明月, 艾保全, 高天附, 郑志刚 2017 物理学报 66 220501Google Scholar

    Lv M T, Yan M Y, Ai B Q, Gao T F, Zheng Z G 2017 Acta Phys. Sin. 66 220501Google Scholar

    [27]

    Wan M B, Reichhardt C J O, Nussinov Z, Reichhardt C 2008 Phys. Rev. Lett. 101 18102Google Scholar

    [28]

    Kummel K, ten Hagen B, Wittkowski R, Buttinoni I, Eichhorn R, Volpe G, Löwen H, Bechinger C 2013 Phys. Rev. Lett. 110 198302Google Scholar

    [29]

    Ai B Q, He Y F, Zhong W R 2017 Phys. Rev. E 95 012116Google Scholar

    [30]

    Zhu W J, Li F G, Ai B Q 2017 Eur. Phys. J. E 40 59Google Scholar

    [31]

    Nourhani A, Crespi V H, Lammert P E 2015 Phys. Rev. Lett. 115 118101Google Scholar

    [32]

    Cardenas-Barrantes M, Cantor D, Barés J, Renouf M, Azéma E 2021 Phys. Rev. E 103 062902Google Scholar

    [33]

    Wang D, Treado J D, Boromand A, Norwick B, Murrell M P, Shattuck M D, O’Hern C S 2021 Soft Matter 17 9901Google Scholar

    [34]

    Boromand A, Signoriello A, Ye F, O’Hern C S, Shattuck M D 2018 Phys. Rev. Lett. 121 248003Google Scholar

    [35]

    Ai B Q, Ma J, Zeng C H, He Y F 2023 Phys. Rev. E 107 024406Google Scholar

    [36]

    Ai B Q, Guo R X 2021 Phys. Rev. E 104 064411Google Scholar

    [37]

    Li J J, Lin F J, Ai B Q 2022 New J. Phys. 24 073027Google Scholar

    [38]

    Reichhardt C J O, Reichhardt C 2010 Phys. Rev. B 81 224516Google Scholar

    [39]

    Bellizotti Souza J C, Vizarim N P, Reichhardt C J O, Reichhardt C, Venegas P A 2021 Phys. Rev. B 104 054434Google Scholar

  • 图 1  (a)可形变粒子在二维不对称周期通道中运动的示意图, 通道的形状利用其半宽度来描述( (1) 式), $ x $方向施加周期边界条件, $ y $方向施加反射边界条件; (b)由20个顶点构成的多边形粒子, $ \{{x}_{m, {\rm{c}}}, {y}_{m, {\rm{c}}}\} $表示多边形m的质心, $\{{x}_{m, i}, {y}_{m, i}\} $表示多边形$ m $的第$ i $顶点的位置

    Fig. 1.  (a) Scheme of deformable particles moving in a two-dimensional asymmetric periodic channel, the shape of the channel is described by the half width of the channel (Eq. (1)), periodic boundary condition is imposed in the $ x $-direction and reflection boundary condition in the $ y $-direction; (b) the deformable polygonal particles with 20 vertices, $ \{{x}_{m, i}, {y}_{m, i}\} $ is the position of vertex $ i $ in the polygon $ m $ and $ \{{x}_{m, {\rm{c}}}, {y}_{m, {\rm{c}}}\} $ is the center of mass of the polygon $ m $.

    图 2  平均速度$ \left\langle{{V}_{{\rm{s}}}}\right\rangle $随不对称参数$ \varDelta $在不同$ {v}_{0} $下的变化曲线, $ A=1.16 $

    Fig. 2.  Average velocity $ \left\langle{{V}_{{\rm{s}}}}\right\rangle $ versus the asymmetric parameter $ \varDelta $ for different $ {v}_{0} $ at $ A=1.16 $.

    图 3  平均速度$ \left\langle{{V}_{{\rm{s}}}}\right\rangle $随自驱动速度$ {v}_{0}{\rm{在}}{\rm{不}}{\rm{同}}\varphi {\rm{下}} $的变化曲线, $ A=1.16 $

    Fig. 3.  Average velocity $ \left\langle{{V}_{{\rm{s}}}}\right\rangle $ versus the self-propulsion speed $ {v}_{0} $ for different $ \varphi $ at $ A=1.16 $.

    图 4  平均速度$ \left\langle{{V}_{{\rm{s}}}}\right\rangle $随旋转扩散系数$ {D}_{\theta }{\rm{在}}{\rm{不}}{\rm{同}}{v}_{0}{\rm{下}} $的变化曲线, $ A=1.16,\; \varphi =0.625 $

    Fig. 4.  Average velocity $ \left\langle{{V}_{{\rm{s}}}}\right\rangle $ versus the rotational diffusion coefficient $ {D}_{\theta } $ for different $ {v}_{0} $ at $ A=1.16$ and $ \varphi =0.625 $.

    图 5  (a) 平均速度$ \left\langle{{V}_{{\rm{s}}}}\right\rangle $随形状参数A在不同$ {v}_{0} $下的变化曲线; (b) 平均速度$ \left\langle{{V}_{{\rm{s}}}}\right\rangle $$ {v}_{0}\text{-}A $平面的相图, $ \varphi =0.625 $

    Fig. 5.  (a) Average velocity $ \left\langle{{V}_{{\rm{s}}}}\right\rangle $ versus the shape parameter $ A $ for different $ {v}_{0} $ at $ \phi =0.625 $; (b) phase diagram of the average velocity $ \left\langle{{V}_{{\rm{s}}}}\right\rangle $in the $ {v}_{0}\text{-}A $ representation at $ \varphi =0.625 $.

    图 6  平均速度$ {V}_{{\rm{s}}} $随密度$ \varphi $在不同$ {v}_{0}$下的变化曲线, $ A = 1.16$

    Fig. 6.  Average velocity $ {V}_{{\rm{s}}} $ versus the density $ \varphi $ for different $ {v}_{0} $ at $ A=1.16 $.

    图 7  $ \varphi =0.625 $时, 单粒子和多粒子的平均速度$ \left\langle{{V}_{{\rm{s}}}}\right\rangle $分别随$ A, \;{v}_{0}, \;{D}_{\theta } $的变化曲线

    Fig. 7.  The average velocity of single particle and many particles $ \left\langle{{V}_{{\rm{s}}}}\right\rangle $ is taken as a function of $ A,\;{v}_{0}, $ and $ {D}_{\theta }$ at $\varphi =0.625 $.

  • [1]

    Xie P 2010 Int. J. Biol. Sci. 6 665Google Scholar

    [2]

    Browne W, Feringa B 2006 Nat. Nanotechnol. 1 25Google Scholar

    [3]

    Jülicher F, Ajdari A, Prost J 1997 Rev. Mod. Phys. 69 1269Google Scholar

    [4]

    刘艳艳, 孙佳明, 范黎明, 高天附, 郑志刚 2023 物理学报 72 040501Google Scholar

    Liu Y Y, Sun J M, Fan L M, Gao T F, Zheng Z G 2023 Acta Phys. Sin. 72 040501Google Scholar

    [5]

    Rice S, Lin A W, Safer D, Hart C L, Naber N, Carragher B O, Cain S M, Pechatnikova E, Wilson-Kubalek E M, Whittaker M, Pate E, Cooke R, Taylor E W, Milligan R A, Vale R D 1999 Nature 402 778Google Scholar

    [6]

    Reimann P 2002 Phys. Rep. 361 57Google Scholar

    [7]

    Ros A, Eichhorn R, Duong T, Regtmeier J, Reimann P, Anselmetti D 2005 Nature 436 928Google Scholar

    [8]

    Gao T F, Chen J C 2009 J. Phys. A Math. Theor. 42 065002Google Scholar

    [9]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106Google Scholar

    [10]

    Gao T F, Liu F S, Chen J C 2012 Chin. Phys. B 21 020502Google Scholar

    [11]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701Google Scholar

    [12]

    Parrondo J M R, De Cisneros B J 2002 Appl. Phys. A 75 179Google Scholar

    [13]

    Luo Y H, Zeng C H, Ai B Q 2020 Phys. Rev. E 102 042114Google Scholar

    [14]

    He Y F, Ai B Q, Dai C X, Song C, Wang R Q, Sun W T, Liu F C, Feng Y 2020 Phys. Rev. Lett. 124 075001Google Scholar

    [15]

    Li Y Y, Ghosh P K, Marchesoni F, Li B W 2014 Phys. Rev. E 90 062301

    [16]

    Mateos L J 2000 Phys. Rev. Lett. 84 258Google Scholar

    [17]

    Ai B Q 2017 Phys. Rev. E 96 012131Google Scholar

    [18]

    Lau B, Kedem O, Ratner M A, Weiss E A 2016 Phys. Rev. E 93 062128Google Scholar

    [19]

    Sandor C, Libal A, Reichhardt C, Olson Reichhardt C J 2017 Phys. Rev. E 95 032606Google Scholar

    [20]

    Astumian R N, Bier M 1994 Phys. Rev. Lett. 72 1766Google Scholar

    [21]

    Liao J J, Zhu W J, Ai B Q 2018 Phys. Rev. E 97 062151Google Scholar

    [22]

    Mei D, Xie C W, Zhang L 2003 Phys. Rev. E 68 051102Google Scholar

    [23]

    de Souza Silva C C, Van de Vondel J, Morelle M, Moshchalkov V V 2006 Nature 440 651Google Scholar

    [24]

    Derenyi I, Vicsek T 1995 Phys. Rev. Lett. 75 374Google Scholar

    [25]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701Google Scholar

    [26]

    吕明涛, 延明月, 艾保全, 高天附, 郑志刚 2017 物理学报 66 220501Google Scholar

    Lv M T, Yan M Y, Ai B Q, Gao T F, Zheng Z G 2017 Acta Phys. Sin. 66 220501Google Scholar

    [27]

    Wan M B, Reichhardt C J O, Nussinov Z, Reichhardt C 2008 Phys. Rev. Lett. 101 18102Google Scholar

    [28]

    Kummel K, ten Hagen B, Wittkowski R, Buttinoni I, Eichhorn R, Volpe G, Löwen H, Bechinger C 2013 Phys. Rev. Lett. 110 198302Google Scholar

    [29]

    Ai B Q, He Y F, Zhong W R 2017 Phys. Rev. E 95 012116Google Scholar

    [30]

    Zhu W J, Li F G, Ai B Q 2017 Eur. Phys. J. E 40 59Google Scholar

    [31]

    Nourhani A, Crespi V H, Lammert P E 2015 Phys. Rev. Lett. 115 118101Google Scholar

    [32]

    Cardenas-Barrantes M, Cantor D, Barés J, Renouf M, Azéma E 2021 Phys. Rev. E 103 062902Google Scholar

    [33]

    Wang D, Treado J D, Boromand A, Norwick B, Murrell M P, Shattuck M D, O’Hern C S 2021 Soft Matter 17 9901Google Scholar

    [34]

    Boromand A, Signoriello A, Ye F, O’Hern C S, Shattuck M D 2018 Phys. Rev. Lett. 121 248003Google Scholar

    [35]

    Ai B Q, Ma J, Zeng C H, He Y F 2023 Phys. Rev. E 107 024406Google Scholar

    [36]

    Ai B Q, Guo R X 2021 Phys. Rev. E 104 064411Google Scholar

    [37]

    Li J J, Lin F J, Ai B Q 2022 New J. Phys. 24 073027Google Scholar

    [38]

    Reichhardt C J O, Reichhardt C 2010 Phys. Rev. B 81 224516Google Scholar

    [39]

    Bellizotti Souza J C, Vizarim N P, Reichhardt C J O, Reichhardt C, Venegas P A 2021 Phys. Rev. B 104 054434Google Scholar

  • [1] 张旭, 曹佳慧, 艾保全, 高天附, 郑志刚. 摩擦不对称耦合布朗马达的定向输运. 物理学报, 2020, 69(10): 100503. doi: 10.7498/aps.69.20191961
    [2] 黎明, 欧阳钟灿, 舒咬根. 驱动马达力学化学耦合机制研究进展. 物理学报, 2016, 65(18): 188702. doi: 10.7498/aps.65.188702
    [3] 林康, 宫晓春, 宋其迎, 季琴颖, 马俊杨, 张文斌, 陆培芬, 曾和平, 吴健. 双色圆偏振飞秒脉冲驱动CO分子不对称解离. 物理学报, 2016, 65(22): 224209. doi: 10.7498/aps.65.224209
    [4] 秦天奇, 王飞, 杨博, 罗懋康. 带反馈的分数阶耦合布朗马达的定向输运. 物理学报, 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [5] 任芮彬, 刘德浩, 王传毅, 罗懋康. 时间非对称外力驱动分数阶布朗马达的定向输运. 物理学报, 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [6] 谢天婷, 张路, 王飞, 罗懋康. 双频驱动下分数阶过阻尼马达在空间对称势中的定向输运. 物理学报, 2014, 63(23): 230503. doi: 10.7498/aps.63.230503
    [7] 王飞, 谢天婷, 邓翠, 罗懋康. 系统非对称性及记忆性对布朗马达输运行为的影响. 物理学报, 2014, 63(16): 160502. doi: 10.7498/aps.63.160502
    [8] 赖莉, 周薛雪, 马洪, 罗懋康. 分数阶布朗马达在闪烁棘齿势中的合作输运现象. 物理学报, 2013, 62(15): 150502. doi: 10.7498/aps.62.150502
    [9] 戴栋, 王其明, 郝艳捧. 大气压氦气介质阻挡放电中的周期一不对称放电实验研究. 物理学报, 2013, 62(13): 135204. doi: 10.7498/aps.62.135204
    [10] 黎航, 蒲昱东, 景龙飞, 林雉伟, 陈伯伦, 蒋炜, 周近宇, 黄天晅, 张海鹰, 于瑞珍, 张继彦, 缪文勇, 郑志坚, 曹柱荣, 杨家敏, 刘慎业, 江少恩, 丁永坤, 况龙钰, 胡广月, 郑坚. 间接驱动的内爆不对称性随腔长和时间变化的研究. 物理学报, 2013, 62(22): 225204. doi: 10.7498/aps.62.225204
    [11] 王飞, 邓翠, 屠浙, 马洪. 耦合分数阶布朗马达在非对称势中的输运. 物理学报, 2013, 62(4): 040501. doi: 10.7498/aps.62.040501
    [12] 程海涛, 何济洲, 肖宇玲. 周期性双势垒锯齿势中温差驱动的布朗热机. 物理学报, 2012, 61(1): 010502. doi: 10.7498/aps.61.010502
    [13] 李钱光, 易煦农, 张秀, 吕昊, 丁么明. 双色场驱动不对称分子气体产生平台区超连续光谱. 物理学报, 2011, 60(1): 017203. doi: 10.7498/aps.60.017203
    [14] 卢宏, 覃莉, 包景东. 周期场中非各态历经布朗运动. 物理学报, 2009, 58(12): 8127-8133. doi: 10.7498/aps.58.8127
    [15] 邓茂林, 洪明潮, 朱位秋, 汪元美. 活性布朗粒子运动的稳态解. 物理学报, 2004, 53(7): 2029-2034. doi: 10.7498/aps.53.2029
    [16] 李 微, 赵同军, 郭鸿涌, 纪 青, 展 永. 布朗马达的非均匀高斯跃迁模型. 物理学报, 2004, 53(11): 3684-3689. doi: 10.7498/aps.53.3684
    [17] 张彦鹏, 唐天同, 付盘铭. 四能级系统极化拍频的不对称特性. 物理学报, 1999, 48(2): 242-249. doi: 10.7498/aps.48.242
    [18] 展永, 包景东, 卓益忠, 吴锡真. 布朗马达的定向输运模型. 物理学报, 1997, 46(10): 1880-1887. doi: 10.7498/aps.46.1880
    [19] 陈启洲, 胡宁. 奇异粒子衰变的上下不对称问题. 物理学报, 1964, 20(4): 374-377. doi: 10.7498/aps.20.374
    [20] 胡宁. Λ和∑粒子衰变的上下不对称性. 物理学报, 1961, 17(7): 315-320. doi: 10.7498/aps.17.315
计量
  • 文章访问数:  2317
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-23
  • 修回日期:  2023-08-09
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-10-20

/

返回文章
返回