搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分子塌缩相变和临界吸附相变的计算机模拟和机器学习

罗启睿 沈一凡 罗孟波

引用本文:
Citation:

高分子塌缩相变和临界吸附相变的计算机模拟和机器学习

罗启睿, 沈一凡, 罗孟波

Computer simulation and machine learning of polymer collapse and critical adsorption phase transitions

Luo Qi-Rui, Shen Yi-Fan, Luo Meng-Bo
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 高分子的塌缩和临界吸附是高分子科学中的两个重要相变现象, 两者均伴随着高分子构象的显著变化 . 本文利用朗之万动力学方法和动力学Monte Carlo方法分别模拟了高分子的塌缩和临界吸附, 同时获得了不同温度下大量的高分子构象数据. 机器学习方法利用模拟得到的大量伸展无规线团态和塌缩液滴态、脱附态和吸附态构象数据训练神经网络, 学习高分子不同状态的特征, 快速准确地分析不同温度的高分子构象信息, 得到对应的塌缩相变温度和临界吸附温度. 结果表明机器学习能正确给出高分子体系的相变温度, 这为机器学习技术研究高分子的相变提供了新的思路和方法.
    Collapse and critical adsorption of polymers are two crucial phase transitions in polymer science, both are accompanied by significant changes in polymer conformation. In this paper, Langevin dynamics and dynamic Monte Carlo methods are used to simulate the collapse and critical adsorption of polymer, respectively, and corresponding phase transition temperatures are estimated. Meanwhile, a large number of polymer conformations at different temperatures are obtained. In the machine learning method, a large number of extended random coil and collapsed spherical, desorption and adsorption conformations are used to train the neural network, so that the neural network can learn the characteristics of different states of the polymer, and it can quickly and accurately analyze the polymer conformations at different temperatures and obtain the corresponding collapse phase transition temperature and critical adsorption temperature. The results demonstrate that machine learning can correctly calculate the phase transition temperature of polymer system, which provides new ideas and methods for machine learning technology in the study of polymer phase transitions.
      通信作者: 罗孟波, luomengbo@zju.edu.cn
      Corresponding author: Luo Meng-Bo, luomengbo@zju.edu.cn
    [1]

    Hinton G, Deng L, Yu D, et al. 2012 IEEE Signal Process. Mag. 29 82Google Scholar

    [2]

    Silver D, Huang A, Maddison C J, et al. 2016 Nature 529 484Google Scholar

    [3]

    Umehara M, Stein H S, Guevarra D, et al. 2019 NPJ Comput. Mater. 5 34Google Scholar

    [4]

    Iwasaki Y, Takeuchi I, Stanev V, et al. 2019 Sci. Rep. 9 2751Google Scholar

    [5]

    陈江芷, 杨晨温, 任捷 2021 物理学报 70 144204Google Scholar

    Chen J Z, Yang C W, Ren J 2021 Acta Phys. Sin. 70 144204Google Scholar

    [6]

    Cencer M M, Moore J S, Assary R S 2022 Polym. Int. 71 537Google Scholar

    [7]

    Zhang Y, Xu X 2021 J. Mol. Graphics Modell. 103 107796Google Scholar

    [8]

    Liang Z, Li Z, Zhou S, et al. 2022 Cell Reports Physical Science 3 100931Google Scholar

    [9]

    Zhang K, Li X, Jin Y, Jiang Y 2022 Soft Matter 18 6270Google Scholar

    [10]

    Xu Y, Wang Z G 2021 Macromolecules 54 10984Google Scholar

    [11]

    Milner S T 1991 Science 251 905Google Scholar

    [12]

    Besteman K, Lee J O, Wiertz F G M, Heering H A, Dekker C 2003 Nano Lett. 3 727Google Scholar

    [13]

    Duan X, Zhang R, Ding M, Huang Q, Xu W S, Shi T, An L 2017 Polymer 122 125Google Scholar

    [14]

    Sumithra K, Brandau M, Straube E 2009 J. Chem. Phys. 130 234901Google Scholar

    [15]

    Li Y W, Wüst T, Landau D P 2013 Phys. Rev. E 87 012706Google Scholar

    [16]

    Yang Q H, Wu F, Wang Q, Luo M B 2016 J. Polym. Sci. Part B: Polym. Phys. 54 2359Google Scholar

    [17]

    Ziebarth J D, Gardiner A A, Wang Y M, Jeong Y, Ahn J, Jin Y, Chang T 2016 Macromolecules 49 8780Google Scholar

    [18]

    Bhattacharya D, Patra T K 2021 Macromolecules 54 3065Google Scholar

    [19]

    Nguyen T, Bavarian M 2022 Ind. Eng. Chem. Res. 61 12690Google Scholar

    [20]

    Weeks J D, Chandler D, Andersen H C 1971 J. Chem. Phys. 54 5237Google Scholar

    [21]

    Chremos A, Glynos E, Koutsos V, Camp P J 2009 Soft Matter 5 637Google Scholar

    [22]

    Hochreiter S, Schmidhuber J A 1997 Neural Comput. 9 1735Google Scholar

    [23]

    Loshchilov I, Hutter F 2017 arXiv:1711.05101 [cs.LG

    [24]

    Luo M B, Tsehay D A, Sun L Z 2017 J. Chem. Phys. 147 034901Google Scholar

    [25]

    Yang X, Wu F, Hu D D, Zhang S, Luo M B 2019 Chin. Phys. Lett. 36 098202Google Scholar

    [26]

    Qi H K, Yang X, Yang Q H, Luo M B 2022 Polymer 259 125330Google Scholar

  • 图 1  模拟高分子的示意图 (a) 稀溶液中的高分子; (b) 低接枝密度的孤立接枝高分子

    Fig. 1.  Schematic diagram of simulated polymers: (a) A polymer in dilute solution; (b) an isolated grafted polymer at low grafting density.

    图 2  机器学习的流程图

    Fig. 2.  Flowchart of machine learning.

    图 3  机器学习中的损失随训练次数的变化

    Fig. 3.  Loss in machine learning varies with the number of trainings.

    图 4  高分子均方回转半径$ \left\langle{{R}_{{\mathrm{G}}}^{2}}\right\rangle $与温度T的关系的朗之万动力学模拟结果. 插图给出了$ \left\langle{{R}_{{\mathrm{G}}}^{2}}\right\rangle $对T的导数与T的关系

    Fig. 4.  Simulation results of the mean square radius of gyration $ \left\langle{{R}_{{\mathrm{G}}}^{2}}\right\rangle $ versus temperature T. The inset presents the $ \left\langle{{R}_{{\mathrm{G}}}^{2}}\right\rangle $ derivative of T in relation to T.

    图 5  高分子平方回转半径$ {R}_{{\mathrm{G}}}^{2} $在温度T = 0.01 (a), 0.5 (b)和3.2 (c)的概率分布. 插图分别给出了T = 0.01 和 3.2 时高分子的典型构象

    Fig. 5.  Plots of the probability distribution of square radius of gyration $ {R}_{{\mathrm{G}}}^{2} $ for polymer at temperatures T = 0.01 (a), 0.5 (b), and 3.2 (c). The insets show the typical polymer conformations at T = 0.01 and 3.2.

    图 6  高分子处于塌缩态的平均概率PG与温度T关系的机器学习结果. 插图给出了|dPG/dT| 随T的变化.

    Fig. 6.  Machine learning results of the mean probability of polymer being in the compact globule state, PG, versus temperature T. The inset shows the change of |dPG/dT| with temperature T.

    图 7  高分子吸附链节数涨落$ {\sigma }_{\rm M}^{2} $与温度T的关系的动力学Monte Carlo模拟结果. 插图给出了高温的非吸附态和低温的吸附态高分子构象

    Fig. 7.  Plot of the fluctuation of adsorption monomer number $ {\sigma }_{\rm M}^{2} $ of polymer chain versus temperature T. The inset presents non-adsorbed polymer at high temperature and adsorbed polymer at low temperature.

    图 8  高分子处于吸附态的平均概率PA和温度变化率|dPA/dT|与温度T的关系的机器学习结果

    Fig. 8.  Plot of the mean adsorption probability PA of polymer and its temperature change rate dPA/dT versus temperature T.

    图 9  利用高分子构象的三维坐标和z坐标进行机器学习得到的高分子处于吸附态的概率PA与温度T的关系

    Fig. 9.  Relationship between adsorption probability PA and temperature T obtained by machine learning using the three-dimensional coordinates and z-coordinates only of polymer conformations.

    图 10  机器学习得到的吸附态概率PA在(0, 0.2), (0.2, 0.8)和(0.8, 1)三个范围内高分子构象相对于构象的吸附数M和链质心高度zc的分布

    Fig. 10.  Distribution of polymer conformation relative to the adsorbed number M and the mean height zc for the adsorption probability PA obtained by machine learning in three ranges of (0, 0.2), (0.2, 0.8) and (0.8, 1).

  • [1]

    Hinton G, Deng L, Yu D, et al. 2012 IEEE Signal Process. Mag. 29 82Google Scholar

    [2]

    Silver D, Huang A, Maddison C J, et al. 2016 Nature 529 484Google Scholar

    [3]

    Umehara M, Stein H S, Guevarra D, et al. 2019 NPJ Comput. Mater. 5 34Google Scholar

    [4]

    Iwasaki Y, Takeuchi I, Stanev V, et al. 2019 Sci. Rep. 9 2751Google Scholar

    [5]

    陈江芷, 杨晨温, 任捷 2021 物理学报 70 144204Google Scholar

    Chen J Z, Yang C W, Ren J 2021 Acta Phys. Sin. 70 144204Google Scholar

    [6]

    Cencer M M, Moore J S, Assary R S 2022 Polym. Int. 71 537Google Scholar

    [7]

    Zhang Y, Xu X 2021 J. Mol. Graphics Modell. 103 107796Google Scholar

    [8]

    Liang Z, Li Z, Zhou S, et al. 2022 Cell Reports Physical Science 3 100931Google Scholar

    [9]

    Zhang K, Li X, Jin Y, Jiang Y 2022 Soft Matter 18 6270Google Scholar

    [10]

    Xu Y, Wang Z G 2021 Macromolecules 54 10984Google Scholar

    [11]

    Milner S T 1991 Science 251 905Google Scholar

    [12]

    Besteman K, Lee J O, Wiertz F G M, Heering H A, Dekker C 2003 Nano Lett. 3 727Google Scholar

    [13]

    Duan X, Zhang R, Ding M, Huang Q, Xu W S, Shi T, An L 2017 Polymer 122 125Google Scholar

    [14]

    Sumithra K, Brandau M, Straube E 2009 J. Chem. Phys. 130 234901Google Scholar

    [15]

    Li Y W, Wüst T, Landau D P 2013 Phys. Rev. E 87 012706Google Scholar

    [16]

    Yang Q H, Wu F, Wang Q, Luo M B 2016 J. Polym. Sci. Part B: Polym. Phys. 54 2359Google Scholar

    [17]

    Ziebarth J D, Gardiner A A, Wang Y M, Jeong Y, Ahn J, Jin Y, Chang T 2016 Macromolecules 49 8780Google Scholar

    [18]

    Bhattacharya D, Patra T K 2021 Macromolecules 54 3065Google Scholar

    [19]

    Nguyen T, Bavarian M 2022 Ind. Eng. Chem. Res. 61 12690Google Scholar

    [20]

    Weeks J D, Chandler D, Andersen H C 1971 J. Chem. Phys. 54 5237Google Scholar

    [21]

    Chremos A, Glynos E, Koutsos V, Camp P J 2009 Soft Matter 5 637Google Scholar

    [22]

    Hochreiter S, Schmidhuber J A 1997 Neural Comput. 9 1735Google Scholar

    [23]

    Loshchilov I, Hutter F 2017 arXiv:1711.05101 [cs.LG

    [24]

    Luo M B, Tsehay D A, Sun L Z 2017 J. Chem. Phys. 147 034901Google Scholar

    [25]

    Yang X, Wu F, Hu D D, Zhang S, Luo M B 2019 Chin. Phys. Lett. 36 098202Google Scholar

    [26]

    Qi H K, Yang X, Yang Q H, Luo M B 2022 Polymer 259 125330Google Scholar

  • [1] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别. 物理学报, 2025, 74(1): 014203. doi: 10.7498/aps.74.20241458
    [2] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为. 物理学报, 2025, 74(2): 028103. doi: 10.7498/aps.74.20241581
    [3] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学. 物理学报, 2025, 74(6): 060701. doi: 10.7498/aps.74.20240999
    [4] 邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜. 机器学习在光电子能谱中的应用及展望. 物理学报, 2024, 73(21): 210701. doi: 10.7498/aps.73.20240957
    [5] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测. 物理学报, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [6] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [7] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [8] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [9] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 物理学报, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [10] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [11] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [12] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [13] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [14] 康俊锋, 冯松江, 邹倩, 李艳杰, 丁瑞强, 钟权加. 基于机器学习的非线性局部Lyapunov向量集合预报订正. 物理学报, 2022, 71(8): 080503. doi: 10.7498/aps.71.20212260
    [15] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [16] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [17] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [18] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [19] 吉 青, 乔宝福, 赵得禄. 高分子的溶度参数理论. 物理学报, 2007, 56(3): 1815-1818. doi: 10.7498/aps.56.1815
    [20] 郭坤琨, 邱 枫, 张红东, 杨玉良. 高分子锚定的流体膜. 物理学报, 2006, 55(1): 155-161. doi: 10.7498/aps.55.155
计量
  • 文章访问数:  3033
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2023-07-23
  • 上网日期:  2023-09-05
  • 刊出日期:  2023-12-20

/

返回文章
返回