搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种光谱特征增强驱动的机器学习地基红外高光谱云检测方法

王越 叶函函 熊伟 王先华 施海亮 李超 程晨 吴时超

引用本文:
Citation:

一种光谱特征增强驱动的机器学习地基红外高光谱云检测方法

王越, 叶函函, 熊伟, 王先华, 施海亮, 李超, 程晨, 吴时超

A spectral feature enhancement-driven machine learning method for cloud detection using ground-based infrared hyperspectral data

WANG Yue, YE Hanhan, XIONG Wei, WANG Xianhua, SHI Hailiang, LI Chao, CHENG Chen, WU Shichao
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 云是地基红外高光谱仪器探测大气的重要干扰源,有效云检测不可或缺.水汽干扰和高云识别精度低是云检测面临的两个关键挑战.本文利用大气红外光谱探测仪(ASSIST)在云南丽江、西藏墨脱和西藏日土的观测数据,分析了晴空和有云条件下的光谱特征差异,并据此提出了一种光谱特征增强的机器学习云检测方法.结合同步观测的激光雷达、气象站及全天空成像仪数据,系统评估了该方法在不同相对湿度(RH)和不同云底高度(CBH)条件下的检测性能.实验结果表明:该方法与激光雷达检测结果的一致性高达97.61%.在不同RH条件下,该方法精度均优于使用原始光谱特征的方法,尤其在RH>70%时,对晴空光谱的识别精度提升明显,从86.01%提高至91.89%.同样,在不同CBH条件下,新方法也展现出优于使用原始光谱特征方法的性能,特别在识别3 kmCBH≤5 km的中云和CBH>5 km的高云时,精度提升尤为明显.当3 kmCBH≤5时,精度从95.45%提升至98.64%;当CBH>5 km时,精度从87.5%提升至91.67%.
    Clouds exert a significant influence on infrared radiation, making cloud detection a crucial step in the application of infrared hyperspectral data. Ground-based infrared hyperspectrometers are capable of measuring downward atmospheric thermal radiation with high temporal resolution; however, their spectral radiance measurements are strongly affected by atmospheric conditions. In particular, water vapor interference and the limited accuracy in high-cloud identification constitute two key challenges for ground-based infrared hyperspectral cloud detection. Conventional threshold-based cloud detection methods struggle to adapt to varying locations and dynamically changing atmospheric conditions, whereas machine learning approaches achieve cloud detection with higher accuracy, greater robustness, and improved automation. Building on the advantages of machine learning, observational data from the Atmospheric Sounder Spectrometer by Infrared Spectral Technology (ASSIST) collected at Lijiang (Yunnan), Motuo (Tibet), and Ritu (Tibet) were used to analyze the spectral differences between clear-sky and cloudy conditions in this study. Based on these differences, we propose a spectral feature enhancement-driven machine learning method for cloud detection. Finally, by incorporating synchronous observations from lidar, meteorological stations, and all-sky imagers, the proposed method is systematically evaluated under varying relative humidity (RH) and cloud base height (CBH) conditions. Experimental results show that the proposed method achieves a high consistency of up to 97.61% with lidar-based detection results. Under different RH conditions, the proposed method outperforms the approach based on original spectral features. Notably, when RH>70%, the accuracy of clear-sky spectral identification improves significantly, increasing from 86.01% to 91.89%. Similarly, under different CBH conditions, the proposed method also demonstrates superior performance compared to the approach using original spectral features. In particular, the accuracy improvements are especially notable when identifying mid-level clouds with 3 kmCBH≤5 km, as well as high-level clouds with CBH>5 km. When 3 kmCBH≤5 km, the accuracy increases from 95.45% to 98.64% and when CBH>5 km, the accuracy improves from 87.5% to 91.67%. The proposed method significantly enhances the automation and accuracy of cloud detection in ground-based infrared hyperspectral radiance data, thereby providing higher-quality fundamental datasets to support subsequent applications such as radiative transfer simulation, remote sensing parameter retrieval, and data assimilation in numerical weather prediction (NWP) models.
  • [1]

    Govender M, Chetty K, Bulcock H 2007 Water S.A. 33 145

    [2]

    Vorovencii I 2010 Bull. Transilv. Univ. Bras. II: For. Wood Ind. Agric. Food Eng. 2 51

    [3]

    Shimoda H, Ogawa T 2000 Adv. Space Res. 25 937

    [4]

    Aumann H H, Miller C R 2002 Proc. SPIE 4483 332

    [5]

    Clerbaux C, Hadji-Lazaro J, Turquety S, George M, Coheur P F, Hurtmans D, Wespes C, Herbin H, Blumstein D, Tourniers B, Phulpin T 2007 Space Res. Today 168 19

    [6]

    Andrew S, Nigel A, William B, Amy D 2015 Atmos. Sci. Lett. 16 260

    [7]

    Qi C L, Wu C Q, Hu X C, Xu H L, Lee L, Zhou F, Gu M J, Yang T H, Shao C Y, Yang Z D, Zhang P 2020 IEEE Trans. Geosci. Remote Sens. 58 4335

    [8]

    Yang J, Zhang Z Q, Wei C Y, Lu F, Guo Q 2017 Bull. Am. Meteorol. Soc. 98 1637

    [9]

    Knuteson R O, Revercomb H E, Best F A, Ciganovich N C, Dedecker R G, Dirkx T P, Ellington S C, Feltz W F, Garcia R K, Howell H B, Smith W L, Short J F, Tobin D C 2004 J. Atmos. Oceanic Technol. 21 1763

    [10]

    Rochette L, Smith W, Howard M, Bratcher T 2009 SPIE 7457 002

    [11]

    Turner D D, Löhnert U 2014 J. Appl. Meteorol. Climatol. 53 752

    [12]

    Mariani Z, Strong K, Palm M, Lindenmaier R, Adams C, Zhao X, Savastiouk V, McElroy C T, Goutail F, Drummond J R 2013 Atmos. Meas. Tech. 6 1549

    [13]

    Seo J, Choi H, Oh Y 2022 Remote Sens. 14 407

    [14]

    Ye J, Liu L, Yang W Y, Ren H 2022 IEEE Geosci. Remote Sens. Lett. 19 1

    [15]

    Wang Y, Xiong W, Ye H H, Shi H L, Wang X H, Li C, Wu S C, Cheng C 2025 Remote Sens. 17 1440

    [16]

    Wang Y, Ye H H, Shi H L, Wang X H, Li C, Sun E C, An Y, Wu S C, Xiong W 2024 J. Quant. Spectrosc. Radiat. Transf. 326 109118

    [17]

    Mcnally A, Watts P A 2003 Q. J. R. Meteorol. Soc. 129 3411

    [18]

    Bauer P, Auligné T, Bell W, Geer A, Guidard V, Heilliette S, Kazumori M, Kim M J, Liu E, McNally A, Macpherson B, Okamoto K, Renshaw R, Riishøjgaard L P 2011 Q. J. R. Meteorol. Soc. 137 1934

    [19]

    Löhnert U, Turner D, Crewell S 2009 J. Appl. Meteorol. Climatol. 48 1017

    [20]

    Li C, Ma J J, Yang P, Li Z Q 2019 J. Quant. Spectrosc. Radiat. Transf. 222 196

    [21]

    Cho J S, Goo T Y, Shin J 2015 Korean Soc. Remote Sens. 31 137

    [22]

    Zhang Q, Yu Y, Zhang W M, Luo T L, Wang X 2019 Remote Sens. 11 3035

    [23]

    Luo T L, Zhang W M, Yu Y, Feng M, Duan B H, Xing D 2019 Int. J. Remote Sens. 40 6530

    [24]

    Shi H X, Yu Y, Zhang W M, Ma G, Zhang Q, Luo T L, Huang Q B 2021 Proceedings of the 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI) Kunming, China, September 17–19, 2021 p107

    [25]

    Liu L, Ye J, Li S L, Hu S, Wang Q 2022 Remote Sens. 14 2589

    [26]

    Michaud-Belleau V, Gaudreau M, Lacoursière J, Boisvert É, Ravelomanantsoa L, Turner D, Rochette L 2025 EGUsphere:2024-3617 [atmospheric sciences]

    [27]

    Zhao Q, Su H C, Yi M J, Yu D S, Xu C D 2021 Chin. J. Lasers 48 2010001 (in Chinese) [赵强,苏红超,易明建,余东升,徐赤东 2021 中国激光 48 201001]

    [28]

    TURNER D 2007 J. Geophys. Res. Atmos. 112 D15

    [29]

    Ishida H, Oishi Y, Morita K, Moriwaki K, Nakajima T 2018 Remote Sens. Environ. 205 390

    [30]

    Wang X P, Zhang F, Kung H T, Johoson V C, Latif A 2020 Int. J. Remote Sens. 41 953

  • [1] 秦成龙, 赵亮, 蒋刚. 机器学习模型预测稀土化合物的热力学稳定性. 物理学报, doi: 10.7498/aps.74.20250362
    [2] 张孙成, 韩同伟, 王如盟, 杨艳陶, 张小燕. 基于机器学习的菱形穿孔石墨烯负泊松比效应预测与优化. 物理学报, doi: 10.7498/aps.74.20241624
    [3] 吴阳海, 杜海龙, 薛雷, 李佳鲜, 薛淼, 郑国尧. 基于机器学习的托卡马克偏滤器靶板热负荷预测研究. 物理学报, doi: 10.7498/aps.74.20250381
    [4] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别. 物理学报, doi: 10.7498/aps.74.20241458
    [5] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为. 物理学报, doi: 10.7498/aps.74.20241581
    [6] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学. 物理学报, doi: 10.7498/aps.74.20240999
    [7] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, doi: 10.7498/aps.73.20241278
    [8] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, doi: 10.7498/aps.73.20240747
    [9] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [10] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, doi: 10.7498/aps.72.20230896
    [11] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, doi: 10.7498/aps.72.20230334
    [12] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, doi: 10.7498/aps.72.20231624
    [13] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, doi: 10.7498/aps.71.20211632
    [14] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, doi: 10.7498/aps.70.20210831
    [15] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, doi: 10.7498/aps.70.20210879
    [16] 孙永丰, 徐亮, 沈先春, 王钰豪, 徐寒杨, 刘文清. 干涉型红外光谱辐射计仪器线型函数仿真及校正. 物理学报, doi: 10.7498/aps.70.20210302
    [17] 孙永丰, 徐亮, 沈先春, 金岭, 徐寒杨, 成潇潇, 王钰豪, 刘文清, 刘建国. 红外光谱辐射计探测器高阶非线性响应校正方法. 物理学报, doi: 10.7498/aps.70.20201530
    [18] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测. 物理学报, doi: 10.7498/aps.70.20210403
    [19] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, doi: 10.7498/aps.68.20190942
    [20] 顾行发, 陈兴峰, 程天海, 李正强, 余涛, 谢东海, 许华. 多角度偏振遥感相机DPC在轨偏振定标. 物理学报, doi: 10.7498/aps.60.070702
计量
  • 文章访问数:  219
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-04

/

返回文章
返回