搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究

林桐 胡蝶 时立宇 张思捷 刘妍琦 吕佳林 董涛 赵俊 王楠林

引用本文:
Citation:

铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究

林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林

Infrared spectroscopy study of ironbased superconductor Li0.8Fe0.2 ODFeSe

Lin Tong, Hu Die, Shi Li-Yu, Zhang Si-Jie, Liu Yan-Qi, Lv Jia-Lin, Dong Tao, Zhao Jun, Wang Nan-Lin
PDF
导出引用
  • 测量和研究了铁基超导体Li0.8Fe0.2ODFeSe单晶的红外光学响应,发现室温下光电导率谱不存在Drude分量,载流子具有非相干输运行为.随着温度降低,Drude分量形成并不断变窄,同时在相应的反射率谱上出现清晰的等离子体边,表明散射率急剧降低.在最低温度,观察到超导能隙形成导致的光谱变化,光电导率谱在160 cm-1以下受到显著压制.对比FeSe单晶的光谱数据,发现整体的光电导率谱型很相似,但自由载流子的谱重更低,揭示出样品具有更低的载流子浓度.另外还观察到温度变化诱导的谱重由低频向高频区域转移的现象,表明其存在强关联效应.
    We perform an in-plane optical spectroscopy measurement on iron-based superconductor Li0.8Fe0.2ODFeSe single crystal. At room temperature, the low frequency optical conductivity shows an incoherent characteristic; the Drude component is absent. With temperature decreasing, the Drude component develops and narrows rapidly. A well-defined plasma edge is observed in reflectance spectrum at temperature below 100 K, indicating a dramatically reduced scattering rate. The spectral weight contributed from free carriers is even smaller than that of FeSe single crystal. A number of phonon modes are visible in the measured spectra. We also observe clear spectral change below 160 cm-1 at 10 K, associated with the formation of superconducting energy gap in the superconducting state. The energy scale of the superconducting gap is comparable to the value measured by angle-resolved photoemission spectroscopy technique. Like FeSe and other iron pnictides, a clear temperature-induced spectral weight transfer at high energy is observed for Li0.8Fe0.2ODFeSe, indicating the presence of strong correlation effect.
      通信作者: 王楠林, nlwang@pku.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2016YFA0300902,2016YFA0300203,2017YFA0302904,2015CB921302)、国家自然科学基金(批准号:11327806,GZ1123)和上海市教育委员会科研创新计划(批准号:2017-01-07-00-07-E00018)资助的课题.
      Corresponding author: Wang Nan-Lin, nlwang@pku.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300902, 2016YFA0300203, 2017YFA0302904, 2015CB921302), the National Natural Science Foundation of China (Grant Nos. 11327806, GZ1123), and the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 2017-01-07-00-07-E00018).
    [1]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [2]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [3]

    Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520

    [4]

    Margadonna S, Takabayashi Y, Ohishi Y, Mizuguchi Y, Takano Y, Kagayama T, Nakagawa T, Takata M, Prassides K 2009 Phys. Rev. B 80 064506

    [5]

    Wang H P, Ye Z R, Zhang Y, Wang N L 2016 Sci. Bull. 61 1126

    [6]

    Liu D F, Zhang W H, Mou D X, He J F, Ou Y B, Wang Q Y, Li Z, Wang L L, Zhao L, He S L, Peng Y Y, Liu X, Chen C Y, Yu L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Hu J P, Chen X, Ma X C, Xue Q K, Zhou X J 2012 Nat. Commun. 3 931

    [7]

    He S L, He J F, Zhang W H, Zhao L, Liu D F, Liu X, Mou D X, Ou Y B, Wang Q Y, Li Z, Wang L L, Peng Y Y, Liu Y, Chen C Y, Yu L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Chen X, Ma X C, Xue Q K, Zhou X J 2013 Nat. Mater. 12 605

    [8]

    Tan S Y, Zhang Y, Xia M, Ye Z Y, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634

    [9]

    Zhang Z C, Wang Y H, Song Q, Liu C, Peng R, Moler K A, Feng D L, Wang Y Y 2015 Sci. Bull. 60 1301

    [10]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325

    [11]

    Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F, Zhao Z X 2015 Phys. Rev. B 92 064515

    [12]

    Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z, Feng D L 2015 Phys. Rev. B 92 060504

    [13]

    Yan Y J, Zhang W H, Ren M Q, Liu X, Lu X F, Wang N Z, Niu X H, Fan Q, Miao J, Tao R, Xie B P, Chen X H, Zhang T, Feng D L 2016 Phys. Rev. B 94 134502

    [14]

    Zhao L, Liang A J, Yuan D N, Hu Y, Liu D F, Huang J W, He S L, Shen B, Xu Y, Liu X, Yu L, Liu G D, Zhou H X, Huang Y L, Dong X L, Zhou F, Liu K, Lu Z Y, Zhao Z X, Chen C T, Xu Z Y, Zhou X J 2016 Nat. Commun. 7 10608

    [15]

    Pan B Y, Shen Y, Hu D, Feng Y, Park J T, Christianson A D, Wang Q S, Hao Y Q, Wo H L, Yin Z P, Maier T A, Zhao J 2017 Nat. Commun. 8 123

    [16]

    Tanner D B 2015 Phys. Rev. B 91 035123

    [17]

    Li G, Hu W Z, Dong J, Li Z, Zheng P, Chen G F, Luo J L, Wang N L 2008 Phys. Rev. Lett. 101 107004

    [18]

    Yuan R H, Kong W D, Yan L, Ding H, Wang N L 2013 Phys. Rev. B 87 144517

    [19]

    Hu W Z, Dong J, Li G, Li Z, Zheng P, Chen G F, Luo J L, Wang N L 2008 Phys. Rev. Lett. 101 257005

    [20]

    Hu W Z, Li G, Zheng P, Chen G F, Luo J L, Wang N L 2009 Phys. Rev. B 80 100507

    [21]

    Wang N L, Hu W Z, Chen Z G, Yuan R H, Li G, Chen G F, Xiang T 2012 J. Phys.: Condens. Matter 24 294202

    [22]

    Benfatto L, Cappelluti E, Ortenzi L, Boeri L 2009 Nat. Phys. 5 647

    [23]

    Qazilbash M M, Hamlin J J, Baumbach R E, Zhang L J, Singh D J, Maple M B, Basov D N 2009 Nat. Phys. 5 647

  • [1]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [2]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [3]

    Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520

    [4]

    Margadonna S, Takabayashi Y, Ohishi Y, Mizuguchi Y, Takano Y, Kagayama T, Nakagawa T, Takata M, Prassides K 2009 Phys. Rev. B 80 064506

    [5]

    Wang H P, Ye Z R, Zhang Y, Wang N L 2016 Sci. Bull. 61 1126

    [6]

    Liu D F, Zhang W H, Mou D X, He J F, Ou Y B, Wang Q Y, Li Z, Wang L L, Zhao L, He S L, Peng Y Y, Liu X, Chen C Y, Yu L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Hu J P, Chen X, Ma X C, Xue Q K, Zhou X J 2012 Nat. Commun. 3 931

    [7]

    He S L, He J F, Zhang W H, Zhao L, Liu D F, Liu X, Mou D X, Ou Y B, Wang Q Y, Li Z, Wang L L, Peng Y Y, Liu Y, Chen C Y, Yu L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Chen X, Ma X C, Xue Q K, Zhou X J 2013 Nat. Mater. 12 605

    [8]

    Tan S Y, Zhang Y, Xia M, Ye Z Y, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634

    [9]

    Zhang Z C, Wang Y H, Song Q, Liu C, Peng R, Moler K A, Feng D L, Wang Y Y 2015 Sci. Bull. 60 1301

    [10]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325

    [11]

    Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F, Zhao Z X 2015 Phys. Rev. B 92 064515

    [12]

    Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z, Feng D L 2015 Phys. Rev. B 92 060504

    [13]

    Yan Y J, Zhang W H, Ren M Q, Liu X, Lu X F, Wang N Z, Niu X H, Fan Q, Miao J, Tao R, Xie B P, Chen X H, Zhang T, Feng D L 2016 Phys. Rev. B 94 134502

    [14]

    Zhao L, Liang A J, Yuan D N, Hu Y, Liu D F, Huang J W, He S L, Shen B, Xu Y, Liu X, Yu L, Liu G D, Zhou H X, Huang Y L, Dong X L, Zhou F, Liu K, Lu Z Y, Zhao Z X, Chen C T, Xu Z Y, Zhou X J 2016 Nat. Commun. 7 10608

    [15]

    Pan B Y, Shen Y, Hu D, Feng Y, Park J T, Christianson A D, Wang Q S, Hao Y Q, Wo H L, Yin Z P, Maier T A, Zhao J 2017 Nat. Commun. 8 123

    [16]

    Tanner D B 2015 Phys. Rev. B 91 035123

    [17]

    Li G, Hu W Z, Dong J, Li Z, Zheng P, Chen G F, Luo J L, Wang N L 2008 Phys. Rev. Lett. 101 107004

    [18]

    Yuan R H, Kong W D, Yan L, Ding H, Wang N L 2013 Phys. Rev. B 87 144517

    [19]

    Hu W Z, Dong J, Li G, Li Z, Zheng P, Chen G F, Luo J L, Wang N L 2008 Phys. Rev. Lett. 101 257005

    [20]

    Hu W Z, Li G, Zheng P, Chen G F, Luo J L, Wang N L 2009 Phys. Rev. B 80 100507

    [21]

    Wang N L, Hu W Z, Chen Z G, Yuan R H, Li G, Chen G F, Xiang T 2012 J. Phys.: Condens. Matter 24 294202

    [22]

    Benfatto L, Cappelluti E, Ortenzi L, Boeri L 2009 Nat. Phys. 5 647

    [23]

    Qazilbash M M, Hamlin J J, Baumbach R E, Zhang L J, Singh D J, Maple M B, Basov D N 2009 Nat. Phys. 5 647

  • [1] 李泽众, 洪文山, 谢涛, 刘畅, 罗会仟. 铁砷化物超导体的自旋激发谱. 物理学报, 2025, 74(1): 017401. doi: 10.7498/aps.74.20241534
    [2] 李更, 丁洪, 汪自强, 高鸿钧. 铁基超导体中的马约拉纳零能模及其阵列构筑. 物理学报, 2024, 73(3): 030302. doi: 10.7498/aps.73.20232022
    [3] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联. 物理学报, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [4] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质. 物理学报, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [5] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [6] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究. 物理学报, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [7] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [8] 王乃舟, 石孟竹, 雷彬, 陈仙辉. FeSe基超导体的探索与物性研究. 物理学报, 2018, 67(20): 207408. doi: 10.7498/aps.67.20181496
    [9] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [10] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [11] 王安静, 方勇华, 李大成, 崔方晓, 吴军, 刘家祥, 李扬裕, 赵彦东. 面阵探测下的污染云团红外光谱仿真. 物理学报, 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [12] 杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎. 铁基超导体FeSe0.5Te0.5表面隧道谱的研究. 物理学报, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [13] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究. 物理学报, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [14] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为. 物理学报, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [15] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择. 物理学报, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [16] 孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋宝安, 沈祥, 徐铁峰. PbI2对远红外Te基硫系玻璃光学性能的影响. 物理学报, 2011, 60(11): 114212. doi: 10.7498/aps.60.114212
    [17] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [18] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性. 物理学报, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
    [19] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [20] 凌志华. 垂直排列液晶盒中反铁电液晶TFMHxPOCBC-D2偏振红外光谱研究. 物理学报, 2001, 50(2): 227-232. doi: 10.7498/aps.50.227
计量
  • 文章访问数:  8924
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-22
  • 修回日期:  2018-08-01
  • 刊出日期:  2019-10-20

/

返回文章
返回