搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基超导体的量子临界行为

李政 周睿 郑国庆

引用本文:
Citation:

铁基超导体的量子临界行为

李政, 周睿, 郑国庆

Quantum criticalities in carrier-doped iron-based superconductors

Li Zheng, Zhou Rui, Zheng Guo-Qing
PDF
导出引用
  • 铁基超导体呈现丰富的电子相图, 各种有序态相互交叠. 本文主要介绍利用核磁共振手段在空穴型和电子型掺杂的BaFe2As2以及LaFeAsO1-xFx这三种具有代表性的铁基超导体中探测到的反铁磁序与超导序的微观共存、量子临界点和量子临界行为. 实验发现, 无论在空穴型还是电子型掺杂的铁基超导体中, 反铁磁相变温度都随着掺杂被抑制, 并最终在某个掺杂量降到零温而形成量子临界点. 在反铁磁转变温度之上存在结构相变, 其转变温度也随着掺杂而降低. 核磁共振谱证实结构相变也形成一个量子临界点. 本文介绍核磁共振及输运测量揭示的这两种量子临界点附近存在的量子临界行为, 共存态下奇异的超导性质等.
    In the past several decades, quantum phase transition and the associated fluctuations have emerged as a major challenge to our understanding of condensed matter. Such transition is tuned by an external parameter such as pressure, chemical doping or magnetic field. The transition point, called quantum critical point (QCP), is only present at absolute zero temperature (T), but its influence (quantum criticality), is spread to nonzero temperature region. Quite often, new stable orders of matter, such as superconductivity, emerge around the QCP, whose relationship with the quantum fluctuations is one of the most important issues. Iron-pnictide superconductors are the second class of high-temperature superconductor family whose phase diagram is very similar to the first class, the copper-oxides. Superconductivity emerges in the vicinity of exotic orders, such as antiferromagnetic, structural or nematic order. Therefore, iron-pnictides provide us a very good opportunity to study quantum criticality. Here we review nuclear magnetic resonance (NMR) study on the coexistence of states and quantum critical phenomena in both hole-doped system Ba1-xKxFe2As2 as well as electron-doped systems BaFe2-xNixAs2 and LaFeAsO1-xFx. Firstly, we found that the 75As NMR spectra split or are broadened for H//c-axis, and shift to a higher frequency for H//ab-plane below a certain temperature in the underdoped region of both hole-doped Ba1-xKxFe2As2 and electron-doped BaFe2-xNixAs2, which indicate that an internal magnetic field develops along the c-axis due to an antiferromagnetic order. Upon further cooling, the spin-lattice relaxation rate 1/T1 measured at the shifted peak shows a distinct decrease below the superconducting critical temperature Tc. These results show unambiguously that the antiferromagnetic order and superconductivity coexist microscopically, which is the essential condition of magnetic QCP. Moreover, the much weaker T-dependence of 1/T1 in the superconducting state compared with the optimal doping sample suggests that the coexisting region is an unusual state and deserves further investigation. Secondly, we conducted transport measurements in electron-doped BaFe2-xNixAs2 system, and found a T-linear resistivity at two critical points. One is at the optimal doping xc1 = 0.10, while the other is in the overdoped region xc2 = 0.14. We found that 1/T1 is nearly T-independent above Tc at xc1 where TN =0, which indicates that xc1 is a magnetic QCP and the observed T-linear resistivity is due to the quantum fluctuation. We find that 1/T1 close to the optimal doping in both Ba1-xKxFe2As2 and LaFeAsO1-xFx also shows a similar behavior as in BaFe2-xNixAs2. The results suggest that superconductivity in these compounds is strongly tied to the quantum antiferromagnetic spin fluctuation. We further studied the structural transition in BaFe2-xNixAs2 by NMR. Since the a-axis and b-axis are not identical below the nematic structural transition temperature Ts, the electric field-gradient becomes asymmetric. Therefore the NMR satellite peaks associated with nuclear spin I=3/2 of 75As split for a twinned single crystal, when the external magnetic field is applied along a- or b-axis. We were able to track the nematic structural transition up to x=0.12. The Ts extrapolates to zero at x=0.14 which suggests that xc2 is a QCP associated with a nematic structural phase transition and the T-linear resistivity at xc2 is therefore due to the QCP. No existing theories can explain such behavior of the resistivity and we call for theoretical investigations in this regard.
      通信作者: 郑国庆, gqzheng@iphy.ac.cn
    • 基金项目: 中科院先导B项目(批准号: XDB07020200)、国家重点基础研究发展计划(批准号: 2012CB821402, 2015CB921304)和国家自然科学基金(批准号: 11104336)资助的课题.
      Corresponding author: Zheng Guo-Qing, gqzheng@iphy.ac.cn
    • Funds: Project supported by the CAS Strategic Priority Research Program, China (Grant No. XDB07020200), the State Key Development Program for Basic Research of China (Grant Nos. 2012CB821402, 2015CB921304), and the National Natural Science Foundation of China (Grant No. 11104336).
    [1]

    Cooper R A, Wang Y, Vignolle B, Lipscombe O J, Hayden S M, Tanabe Y, Adachi T, Koike Y, Nohara M, Takagi H, Proust C, Hussey N E 2009 Science 323 603

    [2]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39

    [3]

    Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186

    [4]

    Coleman P, Schofield A J 2005 Nature 433 226

    [5]

    Sachdev S, Keimer B 2011 Phys. Today 64 29

    [6]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [7]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [8]

    Fernandes R, Schmalian J 2010 Phys. Rev. B 82 014521

    [9]

    Hertz J A 1976 Phys. Rev. B 14 1165

    [10]

    Chakravarty S, Halperin B I, Nelson D R 1989 Phys. Rev. B 39 2344

    [11]

    Moriya T 1991 J. Mag. Mag. Mat. 100 261

    [12]

    Xu C, Mller M, Sachdev S 2008 Phys. Rev. B 78 020501

    [13]

    Chubukov A V, Hirschfeld P J 2015 Phys. Today 68 46

    [14]

    Rotter M, Pangerl M, Tegel M, Johrendt D 2008 Angew. Chem. Int. Ed. 47 7949

    [15]

    Li L J, Luo Y K, Wang Q B, Chen H, Ren Z, Tao Q, Li Y K, Lin X, He M, Zhu Z W, Cao G H, Xu Z A 2009 New. J. Phys. 11 025008

    [16]

    Julien M H, Mayaffre H, Horvatic M, Berthier C, Zhang X D, Wu W, Chen G F, Wang N L, Luo J L 2009 Europhys. Lett. 87 37001

    [17]

    Park J T, Inosov D S, Niedermayer C, Sun G L, Haug D, Christensen N B, Dinnebier R, Boris A V, Drew A J, Schulz L, Shapoval T, Wolff U, Neu V, Yang X, Lin C T, Keimer B, Hinkov V 2009 Phys. Rev. Lett. 102 117006

    [18]

    Baek S H, Lee H, Brown S E, Curro N J, Bauer E D, Ronning F, Park T, Thompson J D 2009 Phys. Rev. Lett. 102 227601

    [19]

    Urbano R R, Green E L, Moulton W G, Reyes A P, Kuhns P L, Bittar E M, Adriano C, Garitezi T M, Bufaiçal L, Pagliuso P G 2010 Phys. Rev. Lett. 105 107001

    [20]

    Wiesenmayer E, Luetkens H, Pascua G, Khasanov R, Amato A, Potts H, Banusch B, Klauss H H, Johrendt D 2011 Phys. Rev. Lett. 107 237001

    [21]

    Avci S, Chmaissem O, Goremychkin E A, Rosenkranz S, Castellan J P, Chung D Y, Todorov I S, Schlueter J A, Claus H, Kanatzidis M G, Daoud-Aladine A, Khalyavin D, Osborn R 2011 Phys. Rev. B 83 172503

    [22]

    Laplace Y, Bobroff J, Rullier-Albenque F, Colson D, Forget A 2009 Phys. Rev. B 80 140501

    [23]

    Sanna S, De Renzi R, Lamura G, Ferdeghini C, Palenzona A, Putti M, Tropeano M, Shiroka T 2009 Phys. Rev. B 80 052503

    [24]

    Sun G L, Sun D L, Konuma M, Popovich P, Boris A, Peng J B, Choi K Y, Lemmens P, Lin C T 2011 J. Supercond. Nov. Magn. 24 1773

    [25]

    Li Z, Zhou R, Liu Y, Sun D L, Yang J, Lin C T, Zheng G Q 2012 Phys. Rev. B 86 180501

    [26]

    Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C, Wen H H 2011 Phys. Rev. B 84 184512

    [27]

    Li Z, Sun D L, Lin C T, Su Y H, Hu J P, Zheng G Q 2011 Phys. Rev. B 83 140506

    [28]

    Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G, Chen X H 2008 Phys. Rev. Lett. 101 257003

    [29]

    Kitagawa K, Katayama N, Ohgushi K, Yoshida M, Takigawa M 2008 J. Phys. Soc. Jpn. 77 114709

    [30]

    Kawasaki S, Mito T, Kawasaki Y, Zheng G Q, Kitaoka Y, Aoki D, Haga Y, Onuki Y 2003 Phys. Rev. Lett. 91 137001

    [31]

    Ma F J, Lu Z Y, Xiang T 2010 Front. Phys. China 5 150

    [32]

    Zhou R, Li Z, Yang J, Sun D L, Lin C T, Zheng G Q 2013 Nat. Commun. 4 2265

    [33]

    Fuseya Y, Kohno H, Miyake K 2003 J. Phys. Soc. Jpn. 72 2914

    [34]

    Maiti S, Fernandes R M, Chubukov A V 2012 Phys. Rev. B 85 144527

    [35]

    Ning F L, Ahilan K, Imai T, Sefat A S, McGuire M A, Sales B C, Mandrus D, Cheng P, Shen B, Wen H H 2010 Phys. Rev. Lett. 104 037001

    [36]

    Dai Y M, Xu B, Shen B, Xiao H, Wen H H, Qiu X G, Homes C C, Lobo R P S M 2013 Phys. Rev. Lett. 111 117001

    [37]

    Nakai Y, Iye T, Kitagawa S, Ishida K, Ikeda H, Kasahara S, Shishido H, Shibauchi T, Matsuda Y, Terashima T 2010 Phys. Rev. Lett. 105 107003

    [38]

    Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R, Matsuda Y 2012 Science 336 1554

    [39]

    Luetkens H, Klauss H H, Kraken M, Litterst F J, Dellmann T, Klingeler R, Hess C, Khasanov R, Amato A, Baines C, Kosmala M, Schumann O J, Braden M, Hamann-Borrero J, Leps N, Kondrat A, Behr G, Werner J, Buchner B 2009 Nat. Mater. 8 305

    [40]

    Oka T, Li Z, Kawasaki S, Chen G F, Wang N L, Zheng G Q 2012 Phys. Rev. Lett. 108 047001

    [41]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [42]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [43]

    Graser S, Maier T A, Hirschfeld P J, Scalapino D J 2009 New. J. Phys. 11 025016

    [44]

    Kontani H, Onari S 2010 Phys. Rev. Lett. 104 157001

  • [1]

    Cooper R A, Wang Y, Vignolle B, Lipscombe O J, Hayden S M, Tanabe Y, Adachi T, Koike Y, Nohara M, Takagi H, Proust C, Hussey N E 2009 Science 323 603

    [2]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39

    [3]

    Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186

    [4]

    Coleman P, Schofield A J 2005 Nature 433 226

    [5]

    Sachdev S, Keimer B 2011 Phys. Today 64 29

    [6]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [7]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [8]

    Fernandes R, Schmalian J 2010 Phys. Rev. B 82 014521

    [9]

    Hertz J A 1976 Phys. Rev. B 14 1165

    [10]

    Chakravarty S, Halperin B I, Nelson D R 1989 Phys. Rev. B 39 2344

    [11]

    Moriya T 1991 J. Mag. Mag. Mat. 100 261

    [12]

    Xu C, Mller M, Sachdev S 2008 Phys. Rev. B 78 020501

    [13]

    Chubukov A V, Hirschfeld P J 2015 Phys. Today 68 46

    [14]

    Rotter M, Pangerl M, Tegel M, Johrendt D 2008 Angew. Chem. Int. Ed. 47 7949

    [15]

    Li L J, Luo Y K, Wang Q B, Chen H, Ren Z, Tao Q, Li Y K, Lin X, He M, Zhu Z W, Cao G H, Xu Z A 2009 New. J. Phys. 11 025008

    [16]

    Julien M H, Mayaffre H, Horvatic M, Berthier C, Zhang X D, Wu W, Chen G F, Wang N L, Luo J L 2009 Europhys. Lett. 87 37001

    [17]

    Park J T, Inosov D S, Niedermayer C, Sun G L, Haug D, Christensen N B, Dinnebier R, Boris A V, Drew A J, Schulz L, Shapoval T, Wolff U, Neu V, Yang X, Lin C T, Keimer B, Hinkov V 2009 Phys. Rev. Lett. 102 117006

    [18]

    Baek S H, Lee H, Brown S E, Curro N J, Bauer E D, Ronning F, Park T, Thompson J D 2009 Phys. Rev. Lett. 102 227601

    [19]

    Urbano R R, Green E L, Moulton W G, Reyes A P, Kuhns P L, Bittar E M, Adriano C, Garitezi T M, Bufaiçal L, Pagliuso P G 2010 Phys. Rev. Lett. 105 107001

    [20]

    Wiesenmayer E, Luetkens H, Pascua G, Khasanov R, Amato A, Potts H, Banusch B, Klauss H H, Johrendt D 2011 Phys. Rev. Lett. 107 237001

    [21]

    Avci S, Chmaissem O, Goremychkin E A, Rosenkranz S, Castellan J P, Chung D Y, Todorov I S, Schlueter J A, Claus H, Kanatzidis M G, Daoud-Aladine A, Khalyavin D, Osborn R 2011 Phys. Rev. B 83 172503

    [22]

    Laplace Y, Bobroff J, Rullier-Albenque F, Colson D, Forget A 2009 Phys. Rev. B 80 140501

    [23]

    Sanna S, De Renzi R, Lamura G, Ferdeghini C, Palenzona A, Putti M, Tropeano M, Shiroka T 2009 Phys. Rev. B 80 052503

    [24]

    Sun G L, Sun D L, Konuma M, Popovich P, Boris A, Peng J B, Choi K Y, Lemmens P, Lin C T 2011 J. Supercond. Nov. Magn. 24 1773

    [25]

    Li Z, Zhou R, Liu Y, Sun D L, Yang J, Lin C T, Zheng G Q 2012 Phys. Rev. B 86 180501

    [26]

    Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C, Wen H H 2011 Phys. Rev. B 84 184512

    [27]

    Li Z, Sun D L, Lin C T, Su Y H, Hu J P, Zheng G Q 2011 Phys. Rev. B 83 140506

    [28]

    Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G, Chen X H 2008 Phys. Rev. Lett. 101 257003

    [29]

    Kitagawa K, Katayama N, Ohgushi K, Yoshida M, Takigawa M 2008 J. Phys. Soc. Jpn. 77 114709

    [30]

    Kawasaki S, Mito T, Kawasaki Y, Zheng G Q, Kitaoka Y, Aoki D, Haga Y, Onuki Y 2003 Phys. Rev. Lett. 91 137001

    [31]

    Ma F J, Lu Z Y, Xiang T 2010 Front. Phys. China 5 150

    [32]

    Zhou R, Li Z, Yang J, Sun D L, Lin C T, Zheng G Q 2013 Nat. Commun. 4 2265

    [33]

    Fuseya Y, Kohno H, Miyake K 2003 J. Phys. Soc. Jpn. 72 2914

    [34]

    Maiti S, Fernandes R M, Chubukov A V 2012 Phys. Rev. B 85 144527

    [35]

    Ning F L, Ahilan K, Imai T, Sefat A S, McGuire M A, Sales B C, Mandrus D, Cheng P, Shen B, Wen H H 2010 Phys. Rev. Lett. 104 037001

    [36]

    Dai Y M, Xu B, Shen B, Xiao H, Wen H H, Qiu X G, Homes C C, Lobo R P S M 2013 Phys. Rev. Lett. 111 117001

    [37]

    Nakai Y, Iye T, Kitagawa S, Ishida K, Ikeda H, Kasahara S, Shishido H, Shibauchi T, Matsuda Y, Terashima T 2010 Phys. Rev. Lett. 105 107003

    [38]

    Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R, Matsuda Y 2012 Science 336 1554

    [39]

    Luetkens H, Klauss H H, Kraken M, Litterst F J, Dellmann T, Klingeler R, Hess C, Khasanov R, Amato A, Baines C, Kosmala M, Schumann O J, Braden M, Hamann-Borrero J, Leps N, Kondrat A, Behr G, Werner J, Buchner B 2009 Nat. Mater. 8 305

    [40]

    Oka T, Li Z, Kawasaki S, Chen G F, Wang N L, Zheng G Q 2012 Phys. Rev. Lett. 108 047001

    [41]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [42]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [43]

    Graser S, Maier T A, Hirschfeld P J, Scalapino D J 2009 New. J. Phys. 11 025016

    [44]

    Kontani H, Onari S 2010 Phys. Rev. Lett. 104 157001

  • [1] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质. 物理学报, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [2] 田宇, 林子栋, 王翔宇, 车良宇, 鲁大为. 基于自旋体系的量子机器学习实验进展. 物理学报, 2021, 70(14): 140305. doi: 10.7498/aps.70.20210684
    [3] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [4] 郝宁, 胡江平. 铁基超导中拓扑量子态研究进展. 物理学报, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [5] 李世亮, 刘曌玉, 谷延红. 利用单轴压强下的电阻变化研究铁基超导体中的向列涨落. 物理学报, 2018, 67(12): 127401. doi: 10.7498/aps.67.20180627
    [6] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 物理学报, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [7] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [8] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术. 物理学报, 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [9] 吴量, 陈方, 黄重阳, 丁国辉, 丁义明. 基于改进非线性拟合的核磁共振T2谱多指数反演. 物理学报, 2016, 65(10): 107601. doi: 10.7498/aps.65.107601
    [10] 田宝凤, 周媛媛, 王悦, 李振宇, 易晓峰. 基于独立成分分析的全波核磁共振信号噪声滤除方法研究. 物理学报, 2015, 64(22): 229301. doi: 10.7498/aps.64.229301
    [11] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择. 物理学报, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [12] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究. 物理学报, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [13] 陈锟, 邓友金. 用量子蒙特卡罗方法研究二维超流-莫特绝缘体相变点附近的希格斯粒子. 物理学报, 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [14] 赵敬龙, 董正超, 仲崇贵, 李诚迪. 量子线/铁基超导隧道结中隧道谱的研究. 物理学报, 2015, 64(5): 057401. doi: 10.7498/aps.64.057401
    [15] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制. 物理学报, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [16] 李新, 肖立志, 刘化冰, 张宗富, 郭葆鑫, 于慧俊, 宗芳荣. 优化重聚脉冲提高梯度场核磁共振信号强度 . 物理学报, 2013, 62(14): 147602. doi: 10.7498/aps.62.147602
    [17] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构. 物理学报, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [18] 李绍, 任育峰, 王宁, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究. 物理学报, 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [19] 潘克家, 陈 华, 谭永基. 基于差分进化算法的核磁共振T2谱多指数反演. 物理学报, 2008, 57(9): 5956-5961. doi: 10.7498/aps.57.5956
    [20] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法. 物理学报, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
计量
  • 文章访问数:  3381
  • PDF下载量:  429
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-06
  • 修回日期:  2015-10-14
  • 刊出日期:  2015-11-05

铁基超导体的量子临界行为

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家实验室, 北京 100190
  • 通信作者: 郑国庆, gqzheng@iphy.ac.cn
    基金项目: 中科院先导B项目(批准号: XDB07020200)、国家重点基础研究发展计划(批准号: 2012CB821402, 2015CB921304)和国家自然科学基金(批准号: 11104336)资助的课题.

摘要: 铁基超导体呈现丰富的电子相图, 各种有序态相互交叠. 本文主要介绍利用核磁共振手段在空穴型和电子型掺杂的BaFe2As2以及LaFeAsO1-xFx这三种具有代表性的铁基超导体中探测到的反铁磁序与超导序的微观共存、量子临界点和量子临界行为. 实验发现, 无论在空穴型还是电子型掺杂的铁基超导体中, 反铁磁相变温度都随着掺杂被抑制, 并最终在某个掺杂量降到零温而形成量子临界点. 在反铁磁转变温度之上存在结构相变, 其转变温度也随着掺杂而降低. 核磁共振谱证实结构相变也形成一个量子临界点. 本文介绍核磁共振及输运测量揭示的这两种量子临界点附近存在的量子临界行为, 共存态下奇异的超导性质等.

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回