-
相互作用量子系统在精密测量领域正受到广泛的关注, 尤其是量子关联态的实现以及相互作用系统的动力学研究, 为量子资源提供了全新的研究方向, 推动了基于相互作用系统的传感技术的深入探索. 然而, 现有研究主要局限于单一物理量的测量, 如何利用相互作用系统实现多物理量的精密测量仍亟待实验验证. 本研究基于超低场条件下强相互作用核自旋系统, 并结合高灵敏的原子磁力计实现信号读出, 成功实现了三维矢量磁场的精密测量, 测量精度达到10–11 T, 方向分辨率高达0.2 rad. 有效克服了传统方法中因外部参考场引入的校准误差和技术噪声的限制. 通过实验上的优化, 基于相互作用的传感器在测量精度上实现了5个数量级的提升, 为开发超高精度的新型量子传感器开辟了全新的技术路径.Quantum sensing utilizes the quantum resources of well-controlled quantum systems to measure small signals with high sensitivity, and has great potential in both fundamental science and concrete applications. Interacting quantum systems have attracted increasing interest in the field of precise measurements, owing to their potential to generate quantum-correlated states and exhibit rich many-body dynamics. These features provide a novel avenue for exploiting quantum resources in sensing applications. Although previous studies have shown that using such systems can improve sensitivity, they mainly focused on measuring individual physical quantities. In experiment, the challenge of using interacting quantum systems to achieve high-precision measurements of multiple physical parameters simultaneously has not been explored to a large extent. In this study, we demonstrate a first realisation of interaction-based multiparameter sensing by using strongly interacting nuclear spins under ultra-low magnetic field conditions. We find that, as the interaction strength among nuclear spins becomes significantly larger than their Larmor frequencies, a different regime emerges where the strongly interacting spins can be simultaneously sensitive to all components of a multidimensional field, such as a three-dimensional magnetic field. Moreover, we observe that the strong interactions between nuclear spins can increase their quantum coherence times to as long as several seconds, thereby improving measurement precision. Our sensor successfully achieves precision measurement of three-dimensional vector magnetic fields with a field sensitivity reaching the order of 10–11 T and an angular resolution as high as 0.2 rad. Importantly, this approach eliminates the need for external reference fields, thereby avoiding calibration errors and technical noise commonly encountered in traditional magnetometry. Experimentally optimized protocol further enhances the sensitivity of the interacting spin-based sensor by up to five orders of magnitude compared with non-interacting or classical schemes. These results demonstrate the enormous potential of interacting spin systems as a powerful platform for high-precision multi-parameter quantum sensing. The techniques developed here pave the way for a new generation of quantum sensors that use intrinsic spin interactions to exceed the traditional sensitivity limits, presenting a promising route toward ultra-sensitive, calibration-free magnetometry in complex environments.
-
Keywords:
- nuclear magnetic resonance /
- quantum sensing /
- quantum metrology /
- nuclear spin interactions
[1] Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photonics 5 222
Google Scholar
[2] Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002
Google Scholar
[3] Pezze L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005
Google Scholar
[4] Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell M W, Pirandola S 2018 Rev. Mod. Phys. 90 035006
Google Scholar
[5] Aasi J, Abadie J, Abbott B, et al. 2013 Nat. Photonics 7 613
Google Scholar
[6] Budker D, Romalis M 2007 Nat. Phys. 3 227
Google Scholar
[7] Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008
Google Scholar
[8] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601
Google Scholar
Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601
Google Scholar
[9] Álvarez G A, Suter D, Kaiser R 2015 Science 349 846
Google Scholar
[10] Lucchesi L, Chiofalo M L 2019 Phys. Rev. Lett. 123 060406
Google Scholar
[11] Kong J, Jiménez-Martínez R, Troullinou C, Lucivero V G, Tóth G, Mitchell M W 2020 Nat. Commun. 11 1
Google Scholar
[12] Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57
Google Scholar
[13] Dooley S, Hanks M, Nakayama S, Munro W J, Nemoto K 2018 NPJ Quant. Inf. 4 1
Google Scholar
[14] Nolan S P, Szigeti S S, Haine S A 2017 Phys. Rev. Lett. 119 193601
Google Scholar
[15] Zhou H, Choi J, Choi S, et al. 2020 Phys. Rev. X 10 031003
[16] Frérot I, Roscilde T 2018 Phys. Rev. Lett. 121 020402
Google Scholar
[17] Roy S, Braunstein S L 2008 Phys. Rev. Lett. 100 220501
Google Scholar
[18] Napolitano M, Koschorreck M, Dubost B, Behbood N, Sewell R, Mitchell M W 2011 Nature 471 486
Google Scholar
[19] Boixo S, Flammia S T, Caves C M, Geremia J M 2007 Phys. Rev. Lett. 98 090401
Google Scholar
[20] Chu Y, Zhang S, Yu B, Cai J 2021 Phys. Rev. Lett. 126 010502
Google Scholar
[21] Rams M M, Sierant P, Dutta O, Horodecki P, Zakrzewski J 2018 Phys. Rev. X 8 021022
[22] Rovny J, Blum R L, Barrett S E 2018 Phys. Rev. Lett. 120 180603
Google Scholar
[23] Kominis I, Kornack T, Allred J, Romalis M V 2003 Nature 422 596
Google Scholar
[24] Boixo S, Datta A, Davis M J, Flammia S T, Shaji A, Caves C M 2008 Phys. Rev. Lett. 101 040403
Google Scholar
[25] 李辉, 江敏, 朱振南, 徐文杰, 徐翔, 彭新华 2019 物理学报 68 160701
Google Scholar
Li H, Jiang M, Zhu Z N, Xu W J, Xu M X, Peng X H 2019 Acta Phys. Sin. 68 160701
Google Scholar
[26] 张语珊, 许廷发 2016 地球物理学进展 31 2346
Google Scholar
Zhang Y S, Xu T F 2016 Prog. Geophys 31 2346
Google Scholar
[27] Wang X, Zhu M, Xiao K, Guo J, Wang L 2019 J. Magn. Reson. 307 106580
Google Scholar
[28] Szczykulska M, Baumgratz T, Datta A 2016 Adv. Phys.: X 1 621
[29] Vidrighin M D, Donati G, Genoni M G, et al. 2014 Nat. Commun. 5 1
[30] Hou Z, Tang J F, Chen H, Yuan H, Xiang G Y, Li C F, Guo G C 2021 Sci. Adv. 7 eabd2986
[31] Roccia E, Cimini V, Sbroscia M, et al. 2018 Optica 5 1171
Google Scholar
[32] Hou Z, Zhang Z, Xiang G Y, Li C F, Guo G C, Chen H, Liu L, Yuan H 2020 Phys. Rev. Lett. 125 020501
Google Scholar
[33] Seltzer S, Romalis M 2004 Appl. Phys. Lett. 85 4804
Google Scholar
[34] Patton B, Zhivun E, Hovde D, Budker D 2014 Phys. Rev. Lett. 113 013001
Google Scholar
[35] Thiele T, Lin Y, Brown M O, Regal C A 2018 Phys. Rev. Lett. 121 153202
Google Scholar
[36] Li R, Quan W, Fan W, Xing L, Wang Z, Zhai Y, Fang J 2017 Chin. Phys. B 26 120702
Google Scholar
[37] Liu J, Yuan H 2017 Phys. Rev. A 96 042114
Google Scholar
[38] Legchenko A, Baltassat J M, Beauce A, Bernard J 2002 J. Appl. Geophys. 50 21
Google Scholar
[39] Gross S, Barmet C, Dietrich B E, Brunner D O, Schmid T, Pruessmann K P 2016 Nat. Commun. 7 1
[40] Genovese M 2016 J. Optics 18 073002
Google Scholar
[41] 王宁, 金贻荣, 邓辉, 吴玉林, 郑国林, 李绍, 田野, 任育峰, 陈莺飞, 郑东宁 2012 物理学报 61 213302
Google Scholar
Wang N, Jin Y R, Deng H, Wu Y L, Zheng G L, Li S, Ye T, Ren Y F, Chen Y F, Zheng D N 2012 Acta Phys. Sin. 61 213302
Google Scholar
[42] Komar P, Kessler E M, Bishof M, Jiang L, Sørensen A S, Ye J, Lukin M D 2014 Nat. Phys. 10 582
Google Scholar
[43] Donley E A 2010 IEEE Sensors Waikoloa, HI, USA, November 01–04, 2010 p17–22
[44] Walker T G, Happer W 1997 Rev. Mod. Phys. 69 629
Google Scholar
[45] Kornack T, Ghosh R, Romalis M 2005 Phys. Rev. Lett. 95 230801
Google Scholar
[46] Hurwitz L, Nelson J 1960 J. Geophys. Res. 65 1759
Google Scholar
[47] Wu T, Blanchard J W, Kimball D F J, Jiang M, Budker D 2018 Phys. Rev. Lett. 121 023202
Google Scholar
[48] Garcon A, Blanchard J W, Centers G P, et al. 2019 Sci. Adv. 5 eaax4539
Google Scholar
[49] Jiang M, Su H, Garcon A, Peng X, Budker D 2021 arXiv: 2102.01448
[50] Farooq M, Chupp T, Grange J, et al. 2020 Phys. Rev. Lett. 124 223001
Google Scholar
[51] Adams R W, Aguilar J A, Atkinson K D, et al. 2009 Science 323 1708
Google Scholar
[52] Theis T, Ganssle P, Kervern G, Knappe S, Kitching J, Ledbetter M, Budker D, Pines A 2011 Nat. Phys. 7 571
Google Scholar
[53] Maly T, Debelouchina G T, Bajaj V S, et al. 2008 J. Chem. Phys. 128 02B611
[54] Spagnolo N, Aparo L, Vitelli C, Crespi A, Ramponi R, Osellame R, Mataloni P, Sciarrino F 2012 Sci. Rep. 2 1
[55] Jiang M, Wu T, Blanchard J W, Feng G, Peng X, Budker D 2018 Sci. Adv. 4 eaar6327
[56] Jiang M, Frutos R P, Wu T, Blanchard J W, Peng X, Budker D 2019 Phys. Rev. Appl. 11 024005
Google Scholar
[57] Tayler M C, Theis T, Sjolander T F, Blanchard J W, Kentner A, Pustelny S, Pines A, Budker D 2017 Rev. Sci. Instrum. 88 091101
Google Scholar
[58] Jiang M, Xu W, Li Q, Wu Z, Suter D, Peng X 2020 Adv. Quantum Technol. 3 2000078
Google Scholar
[59] Ledbetter M, Theis T, Blanchard J, et al. 2011 Phys. Rev. Lett. 107 107601
Google Scholar
[60] Appelt S, Häsing F, Sieling U, Gordji-Nejad A, Glöggler S, Blümich B 2010 Phys. Rev. A 81 023420
Google Scholar
[61] Gemmel C, Heil W, Karpuk S, et al. 2010 Eur. Phys. J. D 57 303
Google Scholar
[62] Sjolander T F, Tayler M C, King J P, Budker D, Pines A 2016 J. Phys. Chem. A 120 4343
Google Scholar
[63] Alcicek S, Put P, Kubrak A, Alcicek F C, Barskiy D, Gloeggler S, Dybas J, Pustelny S 2023 Commun. Chem. 6 165
Google Scholar
[64] Picazo-Frutos R, Sheberstov K F, Blanchard J W, et al. 2024 Nat. Commun. 15 4487
Google Scholar
[65] Zeeman P 1897 Nature 55 347
[66] Condon E U, Condon E, Shortley G 1935 The Theory of Atomic Spectra (Cambridge: Cambridge University Press) pp378–380
[67] Hou Z, Jin Y, Chen H, Tang J F, Huang C J, Yuan H, Xiang G Y, Li C F, Guo G C 2021 Phys. Rev. Lett. 126 070503
Google Scholar
[68] Bao G, Wickenbrock A, Rochester S, Zhang W, Budker D 2018 Phys. Rev. Lett. 120 033202
Google Scholar
[69] 王忻昌, 江文龙, 黄程达, 孙惠军, 曹晓宇, 田中群, 陈忠 2020 光谱学与光谱分析 40 665
Xin-Chang Wang C D H H J S X Y C Z Q T Wen-Long Jiang, Chen Z 2020 Spectrosc. Spectral Anal. 40 665
[70] Jiang M, Bian J, Li Q, Wu Z, Su H, Xu M, Wang Y, Wang X, Peng X 2021 Fundamental Research 1 68
Google Scholar
[71] Jiang M, Bian J, Liu X, Wang H, Ji Y, Zhang B, Peng X, Du J 2018 Phys. Rev. A 97 062118
Google Scholar
[72] Jones J A, Karlen S D, Fitzsimons J, Ardavan A, Benjamin S C, Briggs G A D, Morton J J 2009 Science 324 1166
Google Scholar
[73] Bermudez A, Jelezko F, Plenio M B, Retzker A 2011 Phys. Rev. Lett. 107 150503
Google Scholar
[74] Zhao N, Hu J L, Ho S W, Wan J T, Liu R 2011 Nat. Nanotechnol. 6 242
Google Scholar
[75] Schweiger A, Jeschke G 2001 Principles of Pulse Electron Paramagnetic Resonance (Oxford: Oxford University Press on Demand) pp29–32
[76] Xiao D W, Hu W H, Cai Y, Zhao N 2020 Phys. Rev. Lett. 124 128101
Google Scholar
[77] Qin S, Yin H, Yang C, et al. 2016 Nat. Mater. 15 217
Google Scholar
-
图 1 基于相互作用系统的量子传感实验示意图 (a)实验装置示意图; (b)多参数传感的基本过程, 包括探针态制备、未知磁场编码以及探针态的读出; (c) 87Rb原子磁力计示意图
Fig. 1. Experimental schematic of interaction-based quantum sensing: (a) Diagram of the experimental setup; (b) basic procedure of quantum sensing, including probe state preparation, encoding unknown magnetic field, and probe readout; (c) diagram of the 87Rb atomic magnetometer.
图 2 在不同方向磁场下测量的13CHn分子谱学 (a), (b) 13C-甲酸; (c), (d) 13C-甲醛; (e), (f) 13C-乙腈. 分裂模式与插图中显示的跃迁高度匹配
Fig. 2. Spectra of 13CHn molecules measured at various orientations of the magnetic field: (a), (b) 13C-Formic aci; (c), (d) 13C-formaldehyde; (e), (f) 13C-acetonitrile. The splitting patterns match well the transitions shown in the inset.
图 3 使用甲酸分子进行磁场测量 (a)测量矢量磁场的实验过程; (b)重构矢量磁场的实例; (c)当谱振幅受高斯噪声$ \sim {\cal{N}}(0, \sigma^2) $影响时, θ和ϕ的测量精度; (d)进行300次重复测量磁场强度的直方图
Fig. 3. Magnetic field measurement with formic acid molecules: (a) The procedure of determining a magnetic field vector; (b) as one example of reconstructing the magnetic field vector; (c) measured precision of θ, ϕ when spectral amplitude suffers from Gaussian noise $ \sim {\cal{N}}(0, \sigma ^2) $; (d) histograms of magnetic field strength obtained from 300 repeated measurements.
-
[1] Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photonics 5 222
Google Scholar
[2] Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002
Google Scholar
[3] Pezze L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005
Google Scholar
[4] Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell M W, Pirandola S 2018 Rev. Mod. Phys. 90 035006
Google Scholar
[5] Aasi J, Abadie J, Abbott B, et al. 2013 Nat. Photonics 7 613
Google Scholar
[6] Budker D, Romalis M 2007 Nat. Phys. 3 227
Google Scholar
[7] Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008
Google Scholar
[8] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601
Google Scholar
Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601
Google Scholar
[9] Álvarez G A, Suter D, Kaiser R 2015 Science 349 846
Google Scholar
[10] Lucchesi L, Chiofalo M L 2019 Phys. Rev. Lett. 123 060406
Google Scholar
[11] Kong J, Jiménez-Martínez R, Troullinou C, Lucivero V G, Tóth G, Mitchell M W 2020 Nat. Commun. 11 1
Google Scholar
[12] Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57
Google Scholar
[13] Dooley S, Hanks M, Nakayama S, Munro W J, Nemoto K 2018 NPJ Quant. Inf. 4 1
Google Scholar
[14] Nolan S P, Szigeti S S, Haine S A 2017 Phys. Rev. Lett. 119 193601
Google Scholar
[15] Zhou H, Choi J, Choi S, et al. 2020 Phys. Rev. X 10 031003
[16] Frérot I, Roscilde T 2018 Phys. Rev. Lett. 121 020402
Google Scholar
[17] Roy S, Braunstein S L 2008 Phys. Rev. Lett. 100 220501
Google Scholar
[18] Napolitano M, Koschorreck M, Dubost B, Behbood N, Sewell R, Mitchell M W 2011 Nature 471 486
Google Scholar
[19] Boixo S, Flammia S T, Caves C M, Geremia J M 2007 Phys. Rev. Lett. 98 090401
Google Scholar
[20] Chu Y, Zhang S, Yu B, Cai J 2021 Phys. Rev. Lett. 126 010502
Google Scholar
[21] Rams M M, Sierant P, Dutta O, Horodecki P, Zakrzewski J 2018 Phys. Rev. X 8 021022
[22] Rovny J, Blum R L, Barrett S E 2018 Phys. Rev. Lett. 120 180603
Google Scholar
[23] Kominis I, Kornack T, Allred J, Romalis M V 2003 Nature 422 596
Google Scholar
[24] Boixo S, Datta A, Davis M J, Flammia S T, Shaji A, Caves C M 2008 Phys. Rev. Lett. 101 040403
Google Scholar
[25] 李辉, 江敏, 朱振南, 徐文杰, 徐翔, 彭新华 2019 物理学报 68 160701
Google Scholar
Li H, Jiang M, Zhu Z N, Xu W J, Xu M X, Peng X H 2019 Acta Phys. Sin. 68 160701
Google Scholar
[26] 张语珊, 许廷发 2016 地球物理学进展 31 2346
Google Scholar
Zhang Y S, Xu T F 2016 Prog. Geophys 31 2346
Google Scholar
[27] Wang X, Zhu M, Xiao K, Guo J, Wang L 2019 J. Magn. Reson. 307 106580
Google Scholar
[28] Szczykulska M, Baumgratz T, Datta A 2016 Adv. Phys.: X 1 621
[29] Vidrighin M D, Donati G, Genoni M G, et al. 2014 Nat. Commun. 5 1
[30] Hou Z, Tang J F, Chen H, Yuan H, Xiang G Y, Li C F, Guo G C 2021 Sci. Adv. 7 eabd2986
[31] Roccia E, Cimini V, Sbroscia M, et al. 2018 Optica 5 1171
Google Scholar
[32] Hou Z, Zhang Z, Xiang G Y, Li C F, Guo G C, Chen H, Liu L, Yuan H 2020 Phys. Rev. Lett. 125 020501
Google Scholar
[33] Seltzer S, Romalis M 2004 Appl. Phys. Lett. 85 4804
Google Scholar
[34] Patton B, Zhivun E, Hovde D, Budker D 2014 Phys. Rev. Lett. 113 013001
Google Scholar
[35] Thiele T, Lin Y, Brown M O, Regal C A 2018 Phys. Rev. Lett. 121 153202
Google Scholar
[36] Li R, Quan W, Fan W, Xing L, Wang Z, Zhai Y, Fang J 2017 Chin. Phys. B 26 120702
Google Scholar
[37] Liu J, Yuan H 2017 Phys. Rev. A 96 042114
Google Scholar
[38] Legchenko A, Baltassat J M, Beauce A, Bernard J 2002 J. Appl. Geophys. 50 21
Google Scholar
[39] Gross S, Barmet C, Dietrich B E, Brunner D O, Schmid T, Pruessmann K P 2016 Nat. Commun. 7 1
[40] Genovese M 2016 J. Optics 18 073002
Google Scholar
[41] 王宁, 金贻荣, 邓辉, 吴玉林, 郑国林, 李绍, 田野, 任育峰, 陈莺飞, 郑东宁 2012 物理学报 61 213302
Google Scholar
Wang N, Jin Y R, Deng H, Wu Y L, Zheng G L, Li S, Ye T, Ren Y F, Chen Y F, Zheng D N 2012 Acta Phys. Sin. 61 213302
Google Scholar
[42] Komar P, Kessler E M, Bishof M, Jiang L, Sørensen A S, Ye J, Lukin M D 2014 Nat. Phys. 10 582
Google Scholar
[43] Donley E A 2010 IEEE Sensors Waikoloa, HI, USA, November 01–04, 2010 p17–22
[44] Walker T G, Happer W 1997 Rev. Mod. Phys. 69 629
Google Scholar
[45] Kornack T, Ghosh R, Romalis M 2005 Phys. Rev. Lett. 95 230801
Google Scholar
[46] Hurwitz L, Nelson J 1960 J. Geophys. Res. 65 1759
Google Scholar
[47] Wu T, Blanchard J W, Kimball D F J, Jiang M, Budker D 2018 Phys. Rev. Lett. 121 023202
Google Scholar
[48] Garcon A, Blanchard J W, Centers G P, et al. 2019 Sci. Adv. 5 eaax4539
Google Scholar
[49] Jiang M, Su H, Garcon A, Peng X, Budker D 2021 arXiv: 2102.01448
[50] Farooq M, Chupp T, Grange J, et al. 2020 Phys. Rev. Lett. 124 223001
Google Scholar
[51] Adams R W, Aguilar J A, Atkinson K D, et al. 2009 Science 323 1708
Google Scholar
[52] Theis T, Ganssle P, Kervern G, Knappe S, Kitching J, Ledbetter M, Budker D, Pines A 2011 Nat. Phys. 7 571
Google Scholar
[53] Maly T, Debelouchina G T, Bajaj V S, et al. 2008 J. Chem. Phys. 128 02B611
[54] Spagnolo N, Aparo L, Vitelli C, Crespi A, Ramponi R, Osellame R, Mataloni P, Sciarrino F 2012 Sci. Rep. 2 1
[55] Jiang M, Wu T, Blanchard J W, Feng G, Peng X, Budker D 2018 Sci. Adv. 4 eaar6327
[56] Jiang M, Frutos R P, Wu T, Blanchard J W, Peng X, Budker D 2019 Phys. Rev. Appl. 11 024005
Google Scholar
[57] Tayler M C, Theis T, Sjolander T F, Blanchard J W, Kentner A, Pustelny S, Pines A, Budker D 2017 Rev. Sci. Instrum. 88 091101
Google Scholar
[58] Jiang M, Xu W, Li Q, Wu Z, Suter D, Peng X 2020 Adv. Quantum Technol. 3 2000078
Google Scholar
[59] Ledbetter M, Theis T, Blanchard J, et al. 2011 Phys. Rev. Lett. 107 107601
Google Scholar
[60] Appelt S, Häsing F, Sieling U, Gordji-Nejad A, Glöggler S, Blümich B 2010 Phys. Rev. A 81 023420
Google Scholar
[61] Gemmel C, Heil W, Karpuk S, et al. 2010 Eur. Phys. J. D 57 303
Google Scholar
[62] Sjolander T F, Tayler M C, King J P, Budker D, Pines A 2016 J. Phys. Chem. A 120 4343
Google Scholar
[63] Alcicek S, Put P, Kubrak A, Alcicek F C, Barskiy D, Gloeggler S, Dybas J, Pustelny S 2023 Commun. Chem. 6 165
Google Scholar
[64] Picazo-Frutos R, Sheberstov K F, Blanchard J W, et al. 2024 Nat. Commun. 15 4487
Google Scholar
[65] Zeeman P 1897 Nature 55 347
[66] Condon E U, Condon E, Shortley G 1935 The Theory of Atomic Spectra (Cambridge: Cambridge University Press) pp378–380
[67] Hou Z, Jin Y, Chen H, Tang J F, Huang C J, Yuan H, Xiang G Y, Li C F, Guo G C 2021 Phys. Rev. Lett. 126 070503
Google Scholar
[68] Bao G, Wickenbrock A, Rochester S, Zhang W, Budker D 2018 Phys. Rev. Lett. 120 033202
Google Scholar
[69] 王忻昌, 江文龙, 黄程达, 孙惠军, 曹晓宇, 田中群, 陈忠 2020 光谱学与光谱分析 40 665
Xin-Chang Wang C D H H J S X Y C Z Q T Wen-Long Jiang, Chen Z 2020 Spectrosc. Spectral Anal. 40 665
[70] Jiang M, Bian J, Li Q, Wu Z, Su H, Xu M, Wang Y, Wang X, Peng X 2021 Fundamental Research 1 68
Google Scholar
[71] Jiang M, Bian J, Liu X, Wang H, Ji Y, Zhang B, Peng X, Du J 2018 Phys. Rev. A 97 062118
Google Scholar
[72] Jones J A, Karlen S D, Fitzsimons J, Ardavan A, Benjamin S C, Briggs G A D, Morton J J 2009 Science 324 1166
Google Scholar
[73] Bermudez A, Jelezko F, Plenio M B, Retzker A 2011 Phys. Rev. Lett. 107 150503
Google Scholar
[74] Zhao N, Hu J L, Ho S W, Wan J T, Liu R 2011 Nat. Nanotechnol. 6 242
Google Scholar
[75] Schweiger A, Jeschke G 2001 Principles of Pulse Electron Paramagnetic Resonance (Oxford: Oxford University Press on Demand) pp29–32
[76] Xiao D W, Hu W H, Cai Y, Zhao N 2020 Phys. Rev. Lett. 124 128101
Google Scholar
[77] Qin S, Yin H, Yang C, et al. 2016 Nat. Mater. 15 217
Google Scholar
计量
- 文章访问数: 397
- PDF下载量: 26
- 被引次数: 0