搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于强相互作用核自旋系统的量子传感

李庆 季云兰 刘然 SuterDieter 江敏 彭新华

引用本文:
Citation:

基于强相互作用核自旋系统的量子传感

李庆, 季云兰, 刘然, SuterDieter, 江敏, 彭新华
cstr: 32037.14.aps.74.20250271

Quantum sensing based on strongly interacting nuclear spin systems

LI Qing, JI Yunlan, LIU Ran, Suter Dieter, JIANG Min, PENG Xinhua
cstr: 32037.14.aps.74.20250271
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 相互作用量子系统在精密测量领域正受到广泛的关注, 尤其是量子关联态的实现以及相互作用系统的动力学研究, 为量子资源提供了全新的研究方向, 推动了基于相互作用系统的传感技术的深入探索. 然而, 现有研究主要局限于单一物理量的测量, 如何利用相互作用系统实现多物理量的精密测量仍亟待实验验证. 本研究基于超低场条件下强相互作用核自旋系统, 并结合高灵敏的原子磁力计实现信号读出, 成功实现了三维矢量磁场的精密测量, 测量精度达到10–11 T, 方向分辨率高达0.2 rad. 有效克服了传统方法中因外部参考场引入的校准误差和技术噪声的限制. 通过实验上的优化, 基于相互作用的传感器在测量精度上实现了5个数量级的提升, 为开发超高精度的新型量子传感器开辟了全新的技术路径.
    Quantum sensing utilizes the quantum resources of well-controlled quantum systems to measure small signals with high sensitivity, and has great potential in both fundamental science and concrete applications. Interacting quantum systems have attracted increasing interest in the field of precise measurements, owing to their potential to generate quantum-correlated states and exhibit rich many-body dynamics. These features provide a novel avenue for exploiting quantum resources in sensing applications. Although previous studies have shown that using such systems can improve sensitivity, they mainly focused on measuring individual physical quantities. In experiment, the challenge of using interacting quantum systems to achieve high-precision measurements of multiple physical parameters simultaneously has not been explored to a large extent. In this study, we demonstrate a first realisation of interaction-based multiparameter sensing by using strongly interacting nuclear spins under ultra-low magnetic field conditions. We find that, as the interaction strength among nuclear spins becomes significantly larger than their Larmor frequencies, a different regime emerges where the strongly interacting spins can be simultaneously sensitive to all components of a multidimensional field, such as a three-dimensional magnetic field. Moreover, we observe that the strong interactions between nuclear spins can increase their quantum coherence times to as long as several seconds, thereby improving measurement precision. Our sensor successfully achieves precision measurement of three-dimensional vector magnetic fields with a field sensitivity reaching the order of 10–11 T and an angular resolution as high as 0.2 rad. Importantly, this approach eliminates the need for external reference fields, thereby avoiding calibration errors and technical noise commonly encountered in traditional magnetometry. Experimentally optimized protocol further enhances the sensitivity of the interacting spin-based sensor by up to five orders of magnitude compared with non-interacting or classical schemes. These results demonstrate the enormous potential of interacting spin systems as a powerful platform for high-precision multi-parameter quantum sensing. The techniques developed here pave the way for a new generation of quantum sensors that use intrinsic spin interactions to exceed the traditional sensitivity limits, presenting a promising route toward ultra-sensitive, calibration-free magnetometry in complex environments.
      通信作者: 江敏, dxjm@ustc.edu.cn ; 彭新华, xhpeng@ustc.edu.cn
    • 基金项目: 科技创新2030―“量子通信与量子计算机”重大项目(批准号: 2021ZD0303205)、国家自然科学基金(批准号: T2388102, 11927811, 92476204, 12150014, 12205296, 12274395, 12261160569)和中国科学院“青年创新促进会”人才项目(批准号: 2023474)资助的课题.
      Corresponding author: JIANG Min, dxjm@ustc.edu.cn ; PENG Xinhua, xhpeng@ustc.edu.cn
    • Funds: Project supported by the Innovation Program for Quantum Science and Technology, China (Grant No. 2021ZD0303205), the National Natural Science Foundation of China (Grant Nos. T2388102, 11927811, 92476204, 12150014, 12205296, 12274395, 12261160569), and the Youth Innovation Promotion Association, China (Grant No. 2023474).
    [1]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photonics 5 222Google Scholar

    [2]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar

    [3]

    Pezze L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [4]

    Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell M W, Pirandola S 2018 Rev. Mod. Phys. 90 035006Google Scholar

    [5]

    Aasi J, Abadie J, Abbott B, et al. 2013 Nat. Photonics 7 613Google Scholar

    [6]

    Budker D, Romalis M 2007 Nat. Phys. 3 227Google Scholar

    [7]

    Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [8]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [9]

    Álvarez G A, Suter D, Kaiser R 2015 Science 349 846Google Scholar

    [10]

    Lucchesi L, Chiofalo M L 2019 Phys. Rev. Lett. 123 060406Google Scholar

    [11]

    Kong J, Jiménez-Martínez R, Troullinou C, Lucivero V G, Tóth G, Mitchell M W 2020 Nat. Commun. 11 1Google Scholar

    [12]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57Google Scholar

    [13]

    Dooley S, Hanks M, Nakayama S, Munro W J, Nemoto K 2018 NPJ Quant. Inf. 4 1Google Scholar

    [14]

    Nolan S P, Szigeti S S, Haine S A 2017 Phys. Rev. Lett. 119 193601Google Scholar

    [15]

    Zhou H, Choi J, Choi S, et al. 2020 Phys. Rev. X 10 031003

    [16]

    Frérot I, Roscilde T 2018 Phys. Rev. Lett. 121 020402Google Scholar

    [17]

    Roy S, Braunstein S L 2008 Phys. Rev. Lett. 100 220501Google Scholar

    [18]

    Napolitano M, Koschorreck M, Dubost B, Behbood N, Sewell R, Mitchell M W 2011 Nature 471 486Google Scholar

    [19]

    Boixo S, Flammia S T, Caves C M, Geremia J M 2007 Phys. Rev. Lett. 98 090401Google Scholar

    [20]

    Chu Y, Zhang S, Yu B, Cai J 2021 Phys. Rev. Lett. 126 010502Google Scholar

    [21]

    Rams M M, Sierant P, Dutta O, Horodecki P, Zakrzewski J 2018 Phys. Rev. X 8 021022

    [22]

    Rovny J, Blum R L, Barrett S E 2018 Phys. Rev. Lett. 120 180603Google Scholar

    [23]

    Kominis I, Kornack T, Allred J, Romalis M V 2003 Nature 422 596Google Scholar

    [24]

    Boixo S, Datta A, Davis M J, Flammia S T, Shaji A, Caves C M 2008 Phys. Rev. Lett. 101 040403Google Scholar

    [25]

    李辉, 江敏, 朱振南, 徐文杰, 徐翔, 彭新华 2019 物理学报 68 160701Google Scholar

    Li H, Jiang M, Zhu Z N, Xu W J, Xu M X, Peng X H 2019 Acta Phys. Sin. 68 160701Google Scholar

    [26]

    张语珊, 许廷发 2016 地球物理学进展 31 2346Google Scholar

    Zhang Y S, Xu T F 2016 Prog. Geophys 31 2346Google Scholar

    [27]

    Wang X, Zhu M, Xiao K, Guo J, Wang L 2019 J. Magn. Reson. 307 106580Google Scholar

    [28]

    Szczykulska M, Baumgratz T, Datta A 2016 Adv. Phys.: X 1 621

    [29]

    Vidrighin M D, Donati G, Genoni M G, et al. 2014 Nat. Commun. 5 1

    [30]

    Hou Z, Tang J F, Chen H, Yuan H, Xiang G Y, Li C F, Guo G C 2021 Sci. Adv. 7 eabd2986

    [31]

    Roccia E, Cimini V, Sbroscia M, et al. 2018 Optica 5 1171Google Scholar

    [32]

    Hou Z, Zhang Z, Xiang G Y, Li C F, Guo G C, Chen H, Liu L, Yuan H 2020 Phys. Rev. Lett. 125 020501Google Scholar

    [33]

    Seltzer S, Romalis M 2004 Appl. Phys. Lett. 85 4804Google Scholar

    [34]

    Patton B, Zhivun E, Hovde D, Budker D 2014 Phys. Rev. Lett. 113 013001Google Scholar

    [35]

    Thiele T, Lin Y, Brown M O, Regal C A 2018 Phys. Rev. Lett. 121 153202Google Scholar

    [36]

    Li R, Quan W, Fan W, Xing L, Wang Z, Zhai Y, Fang J 2017 Chin. Phys. B 26 120702Google Scholar

    [37]

    Liu J, Yuan H 2017 Phys. Rev. A 96 042114Google Scholar

    [38]

    Legchenko A, Baltassat J M, Beauce A, Bernard J 2002 J. Appl. Geophys. 50 21Google Scholar

    [39]

    Gross S, Barmet C, Dietrich B E, Brunner D O, Schmid T, Pruessmann K P 2016 Nat. Commun. 7 1

    [40]

    Genovese M 2016 J. Optics 18 073002Google Scholar

    [41]

    王宁, 金贻荣, 邓辉, 吴玉林, 郑国林, 李绍, 田野, 任育峰, 陈莺飞, 郑东宁 2012 物理学报 61 213302Google Scholar

    Wang N, Jin Y R, Deng H, Wu Y L, Zheng G L, Li S, Ye T, Ren Y F, Chen Y F, Zheng D N 2012 Acta Phys. Sin. 61 213302Google Scholar

    [42]

    Komar P, Kessler E M, Bishof M, Jiang L, Sørensen A S, Ye J, Lukin M D 2014 Nat. Phys. 10 582Google Scholar

    [43]

    Donley E A 2010 IEEE Sensors Waikoloa, HI, USA, November 01–04, 2010 p17–22

    [44]

    Walker T G, Happer W 1997 Rev. Mod. Phys. 69 629Google Scholar

    [45]

    Kornack T, Ghosh R, Romalis M 2005 Phys. Rev. Lett. 95 230801Google Scholar

    [46]

    Hurwitz L, Nelson J 1960 J. Geophys. Res. 65 1759Google Scholar

    [47]

    Wu T, Blanchard J W, Kimball D F J, Jiang M, Budker D 2018 Phys. Rev. Lett. 121 023202Google Scholar

    [48]

    Garcon A, Blanchard J W, Centers G P, et al. 2019 Sci. Adv. 5 eaax4539Google Scholar

    [49]

    Jiang M, Su H, Garcon A, Peng X, Budker D 2021 arXiv: 2102.01448

    [50]

    Farooq M, Chupp T, Grange J, et al. 2020 Phys. Rev. Lett. 124 223001Google Scholar

    [51]

    Adams R W, Aguilar J A, Atkinson K D, et al. 2009 Science 323 1708Google Scholar

    [52]

    Theis T, Ganssle P, Kervern G, Knappe S, Kitching J, Ledbetter M, Budker D, Pines A 2011 Nat. Phys. 7 571Google Scholar

    [53]

    Maly T, Debelouchina G T, Bajaj V S, et al. 2008 J. Chem. Phys. 128 02B611

    [54]

    Spagnolo N, Aparo L, Vitelli C, Crespi A, Ramponi R, Osellame R, Mataloni P, Sciarrino F 2012 Sci. Rep. 2 1

    [55]

    Jiang M, Wu T, Blanchard J W, Feng G, Peng X, Budker D 2018 Sci. Adv. 4 eaar6327

    [56]

    Jiang M, Frutos R P, Wu T, Blanchard J W, Peng X, Budker D 2019 Phys. Rev. Appl. 11 024005Google Scholar

    [57]

    Tayler M C, Theis T, Sjolander T F, Blanchard J W, Kentner A, Pustelny S, Pines A, Budker D 2017 Rev. Sci. Instrum. 88 091101Google Scholar

    [58]

    Jiang M, Xu W, Li Q, Wu Z, Suter D, Peng X 2020 Adv. Quantum Technol. 3 2000078Google Scholar

    [59]

    Ledbetter M, Theis T, Blanchard J, et al. 2011 Phys. Rev. Lett. 107 107601Google Scholar

    [60]

    Appelt S, Häsing F, Sieling U, Gordji-Nejad A, Glöggler S, Blümich B 2010 Phys. Rev. A 81 023420Google Scholar

    [61]

    Gemmel C, Heil W, Karpuk S, et al. 2010 Eur. Phys. J. D 57 303Google Scholar

    [62]

    Sjolander T F, Tayler M C, King J P, Budker D, Pines A 2016 J. Phys. Chem. A 120 4343Google Scholar

    [63]

    Alcicek S, Put P, Kubrak A, Alcicek F C, Barskiy D, Gloeggler S, Dybas J, Pustelny S 2023 Commun. Chem. 6 165Google Scholar

    [64]

    Picazo-Frutos R, Sheberstov K F, Blanchard J W, et al. 2024 Nat. Commun. 15 4487Google Scholar

    [65]

    Zeeman P 1897 Nature 55 347

    [66]

    Condon E U, Condon E, Shortley G 1935 The Theory of Atomic Spectra (Cambridge: Cambridge University Press) pp378–380

    [67]

    Hou Z, Jin Y, Chen H, Tang J F, Huang C J, Yuan H, Xiang G Y, Li C F, Guo G C 2021 Phys. Rev. Lett. 126 070503Google Scholar

    [68]

    Bao G, Wickenbrock A, Rochester S, Zhang W, Budker D 2018 Phys. Rev. Lett. 120 033202Google Scholar

    [69]

    王忻昌, 江文龙, 黄程达, 孙惠军, 曹晓宇, 田中群, 陈忠 2020 光谱学与光谱分析 40 665

    Xin-Chang Wang C D H H J S X Y C Z Q T Wen-Long Jiang, Chen Z 2020 Spectrosc. Spectral Anal. 40 665

    [70]

    Jiang M, Bian J, Li Q, Wu Z, Su H, Xu M, Wang Y, Wang X, Peng X 2021 Fundamental Research 1 68Google Scholar

    [71]

    Jiang M, Bian J, Liu X, Wang H, Ji Y, Zhang B, Peng X, Du J 2018 Phys. Rev. A 97 062118Google Scholar

    [72]

    Jones J A, Karlen S D, Fitzsimons J, Ardavan A, Benjamin S C, Briggs G A D, Morton J J 2009 Science 324 1166Google Scholar

    [73]

    Bermudez A, Jelezko F, Plenio M B, Retzker A 2011 Phys. Rev. Lett. 107 150503Google Scholar

    [74]

    Zhao N, Hu J L, Ho S W, Wan J T, Liu R 2011 Nat. Nanotechnol. 6 242Google Scholar

    [75]

    Schweiger A, Jeschke G 2001 Principles of Pulse Electron Paramagnetic Resonance (Oxford: Oxford University Press on Demand) pp29–32

    [76]

    Xiao D W, Hu W H, Cai Y, Zhao N 2020 Phys. Rev. Lett. 124 128101Google Scholar

    [77]

    Qin S, Yin H, Yang C, et al. 2016 Nat. Mater. 15 217Google Scholar

  • 图 1  基于相互作用系统的量子传感实验示意图 (a)实验装置示意图; (b)多参数传感的基本过程, 包括探针态制备、未知磁场编码以及探针态的读出; (c) 87Rb原子磁力计示意图

    Fig. 1.  Experimental schematic of interaction-based quantum sensing: (a) Diagram of the experimental setup; (b) basic procedure of quantum sensing, including probe state preparation, encoding unknown magnetic field, and probe readout; (c) diagram of the 87Rb atomic magnetometer.

    图 2  在不同方向磁场下测量的13CHn分子谱学 (a), (b) 13C-甲酸; (c), (d) 13C-甲醛; (e), (f) 13C-乙腈. 分裂模式与插图中显示的跃迁高度匹配

    Fig. 2.  Spectra of 13CHn molecules measured at various orientations of the magnetic field: (a), (b) 13C-Formic aci; (c), (d) 13C-formaldehyde; (e), (f) 13C-acetonitrile. The splitting patterns match well the transitions shown in the inset.

    图 3  使用甲酸分子进行磁场测量 (a)测量矢量磁场的实验过程; (b)重构矢量磁场的实例; (c)当谱振幅受高斯噪声$ \sim {\cal{N}}(0, \sigma^2) $影响时, θϕ的测量精度; (d)进行300次重复测量磁场强度的直方图

    Fig. 3.  Magnetic field measurement with formic acid molecules: (a) The procedure of determining a magnetic field vector; (b) as one example of reconstructing the magnetic field vector; (c) measured precision of θ, ϕ when spectral amplitude suffers from Gaussian noise $ \sim {\cal{N}}(0, \sigma ^2) $; (d) histograms of magnetic field strength obtained from 300 repeated measurements.

  • [1]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photonics 5 222Google Scholar

    [2]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar

    [3]

    Pezze L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [4]

    Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell M W, Pirandola S 2018 Rev. Mod. Phys. 90 035006Google Scholar

    [5]

    Aasi J, Abadie J, Abbott B, et al. 2013 Nat. Photonics 7 613Google Scholar

    [6]

    Budker D, Romalis M 2007 Nat. Phys. 3 227Google Scholar

    [7]

    Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [8]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [9]

    Álvarez G A, Suter D, Kaiser R 2015 Science 349 846Google Scholar

    [10]

    Lucchesi L, Chiofalo M L 2019 Phys. Rev. Lett. 123 060406Google Scholar

    [11]

    Kong J, Jiménez-Martínez R, Troullinou C, Lucivero V G, Tóth G, Mitchell M W 2020 Nat. Commun. 11 1Google Scholar

    [12]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57Google Scholar

    [13]

    Dooley S, Hanks M, Nakayama S, Munro W J, Nemoto K 2018 NPJ Quant. Inf. 4 1Google Scholar

    [14]

    Nolan S P, Szigeti S S, Haine S A 2017 Phys. Rev. Lett. 119 193601Google Scholar

    [15]

    Zhou H, Choi J, Choi S, et al. 2020 Phys. Rev. X 10 031003

    [16]

    Frérot I, Roscilde T 2018 Phys. Rev. Lett. 121 020402Google Scholar

    [17]

    Roy S, Braunstein S L 2008 Phys. Rev. Lett. 100 220501Google Scholar

    [18]

    Napolitano M, Koschorreck M, Dubost B, Behbood N, Sewell R, Mitchell M W 2011 Nature 471 486Google Scholar

    [19]

    Boixo S, Flammia S T, Caves C M, Geremia J M 2007 Phys. Rev. Lett. 98 090401Google Scholar

    [20]

    Chu Y, Zhang S, Yu B, Cai J 2021 Phys. Rev. Lett. 126 010502Google Scholar

    [21]

    Rams M M, Sierant P, Dutta O, Horodecki P, Zakrzewski J 2018 Phys. Rev. X 8 021022

    [22]

    Rovny J, Blum R L, Barrett S E 2018 Phys. Rev. Lett. 120 180603Google Scholar

    [23]

    Kominis I, Kornack T, Allred J, Romalis M V 2003 Nature 422 596Google Scholar

    [24]

    Boixo S, Datta A, Davis M J, Flammia S T, Shaji A, Caves C M 2008 Phys. Rev. Lett. 101 040403Google Scholar

    [25]

    李辉, 江敏, 朱振南, 徐文杰, 徐翔, 彭新华 2019 物理学报 68 160701Google Scholar

    Li H, Jiang M, Zhu Z N, Xu W J, Xu M X, Peng X H 2019 Acta Phys. Sin. 68 160701Google Scholar

    [26]

    张语珊, 许廷发 2016 地球物理学进展 31 2346Google Scholar

    Zhang Y S, Xu T F 2016 Prog. Geophys 31 2346Google Scholar

    [27]

    Wang X, Zhu M, Xiao K, Guo J, Wang L 2019 J. Magn. Reson. 307 106580Google Scholar

    [28]

    Szczykulska M, Baumgratz T, Datta A 2016 Adv. Phys.: X 1 621

    [29]

    Vidrighin M D, Donati G, Genoni M G, et al. 2014 Nat. Commun. 5 1

    [30]

    Hou Z, Tang J F, Chen H, Yuan H, Xiang G Y, Li C F, Guo G C 2021 Sci. Adv. 7 eabd2986

    [31]

    Roccia E, Cimini V, Sbroscia M, et al. 2018 Optica 5 1171Google Scholar

    [32]

    Hou Z, Zhang Z, Xiang G Y, Li C F, Guo G C, Chen H, Liu L, Yuan H 2020 Phys. Rev. Lett. 125 020501Google Scholar

    [33]

    Seltzer S, Romalis M 2004 Appl. Phys. Lett. 85 4804Google Scholar

    [34]

    Patton B, Zhivun E, Hovde D, Budker D 2014 Phys. Rev. Lett. 113 013001Google Scholar

    [35]

    Thiele T, Lin Y, Brown M O, Regal C A 2018 Phys. Rev. Lett. 121 153202Google Scholar

    [36]

    Li R, Quan W, Fan W, Xing L, Wang Z, Zhai Y, Fang J 2017 Chin. Phys. B 26 120702Google Scholar

    [37]

    Liu J, Yuan H 2017 Phys. Rev. A 96 042114Google Scholar

    [38]

    Legchenko A, Baltassat J M, Beauce A, Bernard J 2002 J. Appl. Geophys. 50 21Google Scholar

    [39]

    Gross S, Barmet C, Dietrich B E, Brunner D O, Schmid T, Pruessmann K P 2016 Nat. Commun. 7 1

    [40]

    Genovese M 2016 J. Optics 18 073002Google Scholar

    [41]

    王宁, 金贻荣, 邓辉, 吴玉林, 郑国林, 李绍, 田野, 任育峰, 陈莺飞, 郑东宁 2012 物理学报 61 213302Google Scholar

    Wang N, Jin Y R, Deng H, Wu Y L, Zheng G L, Li S, Ye T, Ren Y F, Chen Y F, Zheng D N 2012 Acta Phys. Sin. 61 213302Google Scholar

    [42]

    Komar P, Kessler E M, Bishof M, Jiang L, Sørensen A S, Ye J, Lukin M D 2014 Nat. Phys. 10 582Google Scholar

    [43]

    Donley E A 2010 IEEE Sensors Waikoloa, HI, USA, November 01–04, 2010 p17–22

    [44]

    Walker T G, Happer W 1997 Rev. Mod. Phys. 69 629Google Scholar

    [45]

    Kornack T, Ghosh R, Romalis M 2005 Phys. Rev. Lett. 95 230801Google Scholar

    [46]

    Hurwitz L, Nelson J 1960 J. Geophys. Res. 65 1759Google Scholar

    [47]

    Wu T, Blanchard J W, Kimball D F J, Jiang M, Budker D 2018 Phys. Rev. Lett. 121 023202Google Scholar

    [48]

    Garcon A, Blanchard J W, Centers G P, et al. 2019 Sci. Adv. 5 eaax4539Google Scholar

    [49]

    Jiang M, Su H, Garcon A, Peng X, Budker D 2021 arXiv: 2102.01448

    [50]

    Farooq M, Chupp T, Grange J, et al. 2020 Phys. Rev. Lett. 124 223001Google Scholar

    [51]

    Adams R W, Aguilar J A, Atkinson K D, et al. 2009 Science 323 1708Google Scholar

    [52]

    Theis T, Ganssle P, Kervern G, Knappe S, Kitching J, Ledbetter M, Budker D, Pines A 2011 Nat. Phys. 7 571Google Scholar

    [53]

    Maly T, Debelouchina G T, Bajaj V S, et al. 2008 J. Chem. Phys. 128 02B611

    [54]

    Spagnolo N, Aparo L, Vitelli C, Crespi A, Ramponi R, Osellame R, Mataloni P, Sciarrino F 2012 Sci. Rep. 2 1

    [55]

    Jiang M, Wu T, Blanchard J W, Feng G, Peng X, Budker D 2018 Sci. Adv. 4 eaar6327

    [56]

    Jiang M, Frutos R P, Wu T, Blanchard J W, Peng X, Budker D 2019 Phys. Rev. Appl. 11 024005Google Scholar

    [57]

    Tayler M C, Theis T, Sjolander T F, Blanchard J W, Kentner A, Pustelny S, Pines A, Budker D 2017 Rev. Sci. Instrum. 88 091101Google Scholar

    [58]

    Jiang M, Xu W, Li Q, Wu Z, Suter D, Peng X 2020 Adv. Quantum Technol. 3 2000078Google Scholar

    [59]

    Ledbetter M, Theis T, Blanchard J, et al. 2011 Phys. Rev. Lett. 107 107601Google Scholar

    [60]

    Appelt S, Häsing F, Sieling U, Gordji-Nejad A, Glöggler S, Blümich B 2010 Phys. Rev. A 81 023420Google Scholar

    [61]

    Gemmel C, Heil W, Karpuk S, et al. 2010 Eur. Phys. J. D 57 303Google Scholar

    [62]

    Sjolander T F, Tayler M C, King J P, Budker D, Pines A 2016 J. Phys. Chem. A 120 4343Google Scholar

    [63]

    Alcicek S, Put P, Kubrak A, Alcicek F C, Barskiy D, Gloeggler S, Dybas J, Pustelny S 2023 Commun. Chem. 6 165Google Scholar

    [64]

    Picazo-Frutos R, Sheberstov K F, Blanchard J W, et al. 2024 Nat. Commun. 15 4487Google Scholar

    [65]

    Zeeman P 1897 Nature 55 347

    [66]

    Condon E U, Condon E, Shortley G 1935 The Theory of Atomic Spectra (Cambridge: Cambridge University Press) pp378–380

    [67]

    Hou Z, Jin Y, Chen H, Tang J F, Huang C J, Yuan H, Xiang G Y, Li C F, Guo G C 2021 Phys. Rev. Lett. 126 070503Google Scholar

    [68]

    Bao G, Wickenbrock A, Rochester S, Zhang W, Budker D 2018 Phys. Rev. Lett. 120 033202Google Scholar

    [69]

    王忻昌, 江文龙, 黄程达, 孙惠军, 曹晓宇, 田中群, 陈忠 2020 光谱学与光谱分析 40 665

    Xin-Chang Wang C D H H J S X Y C Z Q T Wen-Long Jiang, Chen Z 2020 Spectrosc. Spectral Anal. 40 665

    [70]

    Jiang M, Bian J, Li Q, Wu Z, Su H, Xu M, Wang Y, Wang X, Peng X 2021 Fundamental Research 1 68Google Scholar

    [71]

    Jiang M, Bian J, Liu X, Wang H, Ji Y, Zhang B, Peng X, Du J 2018 Phys. Rev. A 97 062118Google Scholar

    [72]

    Jones J A, Karlen S D, Fitzsimons J, Ardavan A, Benjamin S C, Briggs G A D, Morton J J 2009 Science 324 1166Google Scholar

    [73]

    Bermudez A, Jelezko F, Plenio M B, Retzker A 2011 Phys. Rev. Lett. 107 150503Google Scholar

    [74]

    Zhao N, Hu J L, Ho S W, Wan J T, Liu R 2011 Nat. Nanotechnol. 6 242Google Scholar

    [75]

    Schweiger A, Jeschke G 2001 Principles of Pulse Electron Paramagnetic Resonance (Oxford: Oxford University Press on Demand) pp29–32

    [76]

    Xiao D W, Hu W H, Cai Y, Zhao N 2020 Phys. Rev. Lett. 124 128101Google Scholar

    [77]

    Qin S, Yin H, Yang C, et al. 2016 Nat. Mater. 15 217Google Scholar

  • [1] 徐佳歆, 徐乐辰, 刘靖阳, 丁华建, 王琴. 人工智能赋能量子通信与量子传感系统. 物理学报, 2025, 74(12): . doi: 10.7498/aps.74.20250322
    [2] 刘刚钦. 高压下的色心磁共振和量子传感. 物理学报, 2025, 74(11): 117601. doi: 10.7498/aps.74.20250224
    [3] 赵立强, 李宇晨, 尹浩川, 张晟昱, 吴泽, 彭新华. 固态核磁共振量子控制及其应用. 物理学报, 2025, 74(7): 077402. doi: 10.7498/aps.74.20241709
    [4] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术. 物理学报, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [5] 刘刚钦. 极端条件下的金刚石自旋量子传感. 物理学报, 2022, 71(6): 066101. doi: 10.7498/aps.71.20212072
    [6] 田宇, 林子栋, 王翔宇, 车良宇, 鲁大为. 基于自旋体系的量子机器学习实验进展. 物理学报, 2021, 70(14): 140305. doi: 10.7498/aps.70.20210684
    [7] 蒋川东, 王琦, 杜官峰, 易晓峰, 田宝凤. 地面核磁偏共振响应特征与复包络反演方法. 物理学报, 2018, 67(1): 013302. doi: 10.7498/aps.67.20171464
    [8] 刘刚钦, 邢健, 潘新宇. 金刚石氮空位中心自旋量子调控. 物理学报, 2018, 67(12): 120302. doi: 10.7498/aps.67.20180755
    [9] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 物理学报, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [10] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术. 物理学报, 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [11] 吴量, 陈方, 黄重阳, 丁国辉, 丁义明. 基于改进非线性拟合的核磁共振T2谱多指数反演. 物理学报, 2016, 65(10): 107601. doi: 10.7498/aps.65.107601
    [12] 田宝凤, 周媛媛, 王悦, 李振宇, 易晓峰. 基于独立成分分析的全波核磁共振信号噪声滤除方法研究. 物理学报, 2015, 64(22): 229301. doi: 10.7498/aps.64.229301
    [13] 凌宏胜, 田佳欣, 周淑娜, 魏达秀. Ising耦合体系中量子傅里叶变换的优化. 物理学报, 2015, 64(17): 170301. doi: 10.7498/aps.64.170301
    [14] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为. 物理学报, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [15] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制. 物理学报, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [16] 李新, 肖立志, 刘化冰, 张宗富, 郭葆鑫, 于慧俊, 宗芳荣. 优化重聚脉冲提高梯度场核磁共振信号强度. 物理学报, 2013, 62(14): 147602. doi: 10.7498/aps.62.147602
    [17] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构. 物理学报, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [18] 李绍, 任育峰, 王宁, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究. 物理学报, 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [19] 潘克家, 陈 华, 谭永基. 基于差分进化算法的核磁共振T2谱多指数反演. 物理学报, 2008, 57(9): 5956-5961. doi: 10.7498/aps.57.5956
    [20] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法. 物理学报, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
计量
  • 文章访问数:  397
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-04
  • 修回日期:  2025-04-15
  • 上网日期:  2025-04-23
  • 刊出日期:  2025-06-05

/

返回文章
返回