-
1K低温系统是进一步实现mK温区及更低温度的基础,目前广泛应用于量子计算、凝聚态物理研究、低温科学仪器等领域。目前国内的1K低温系统大多使用GM制冷机进行预冷,系统在实现更低振动控制、更低电噪声干扰、更低预冷温度和更高液化效率等方面存在一定难题,而基于脉管制冷机预冷的1K系统在解决这些问题方面具有先天优势。本文发展了一台全国产化的4K GM脉管制冷机,获得了2.14 K的最低制冷温度,并可同时提供1.5 W@4.2 K和45 W@45 K的制冷量。将其作为预冷制冷机,设计并搭建了1K低温系统,最终获得了1.1 K的最低制冷温度,并可在1.6 K提供100 mW的制冷量。本研究为后续开展更大冷量稀释制冷技术奠定了重要基础。The 1 K cryogenic system can provide a stable and necessary low-temperature environment for some fields such as quantum computing, condensed matter physics research, and cryogenic scientific instruments. Specifically, in the field of basic research, 1 K is an ideal condition for studying quantum phenomena in low-temperature physics (such as quantum Hall effect, topological phase transition, etc.); in the field of technical applications, 1 K is a necessary condition for some quantum devices (such as superconducting quantum interferometers, single-photon detectors, etc.) to achieve high-sensitivity operation; in the field of ultra-low temperature technology, 1 K is the pre-cooling stage of refrigeration technologies such as dilution refrigerators, and is the basis for further achieving mK temperature ranges and lower temperatures. At present, most domestic 1 K systems use GM cryocoolers for pre-cooling. The system has certain difficulties in achieving lower vibration control, lower electrical noise interference, lower pre-cooling temperature and higher liquefaction efficiency. The 1 K systems based on pulse tube cryocoolers pre-cooling have inherent advantages in solving these problems. This paper first developed a 4 K GM-type pulse tube cryocooler, using a domestic helium compressor and a developed rotary valve, and redesigned the cold-end heat exchanger and the room-temperature phase shifters, achieving a minimum cooling temperature of 2.14 K, and providing 1.5 W@4.2 K and 45 W@45 K cooling capacity simultaneously. Based on the self-developed pulse tube cryocooler as the pre-cooling stage, a 1 K cryogenic system was further constructed. By designing key components such as JT flow resistance, combined thermal switch, and anti-superflow structure, a minimum cooling temperature of 1.1 K was obtained, and a cooling capacity of 100 mW can be provided at 1.6 K. This study has laid an important foundation for the subsequent development of dilution refrigerators with larger cooling capacity.
-
Keywords:
- Pulse tube cryocooler /
- GM-type /
- 1 K system /
- Dilution refrigeration
-
[1] Zhao Z Y, Wang C 2019 Cryogenic engineering and technologies: principles and applications of cryogen-free systems (CRC Press) p233
[2] Li K, Wang Y N, Liu P, Yu F Q, Dai W, Shen J 2023 Acta Phys. Sin. 72 190702 (In Chinese) [李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊 2023 物理学报 72 190702]
[3] Zu H Y, Cheng W J, Wang Y N, Wang X T, Li K, Dai W 2023 Acta Phys. Sin. 72 080701 (In Chinese) [俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍 2023 物理学报 72 080701]
[4] Wang C, Li K, Shen J, Dai W, Wang Y N, Luo E C, Shen B G, Zhou Y 2021 Acta Phys. Sin. 70 090702 (In Chinese) [王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远 2021 物理学报 70 090702]
[5] Zheng M W, Guo H W, Wei L J, Pan Z J, Zou J R, Li R X, Zhao M G, Chen H L, Liang J T 2024 Acta Phys. Sin. 73 230701 (In Chinese) [郑茂文, 郭浩文, 卫铃佼, 潘子杰, 邹佳润, 李瑞鑫, 赵密广, 陈厚磊, 梁惊涛 2024 物理学报 73 230701]
[6] Guan X, Fan J, Bian Y B, Cheng Z G, Ji Z Q 2024 Chinese Phys. B 33 070701
[7] Jahromi A E, Miller F K 2014 Cryogenics 61 15
[8] DeMann A, Mueller S, Field S B 2016 Cryogenics 73 60
[9] Cao H 2021 Journal of Low Temperature Physics 204 175
[10] Bluefors and Cryomech 1 K systems products https://bluefors.com/products/1k-systems/
[11] Oxford Instruments 1 K cryostats products https://nanoscience.oxinst.com/dry-systems/products/teslatronpt
[12] Quantum Design 1 K measurement systems products
[13] https://www.qd-china.com/zh/pro/detail3/1/1912091422155/1909260926498
[14] Wang L G, Qu Q X, Chen H, Dai N N, Zhao W Y, Jia P, Xu D, Li L F 2025 Cryogenics 145 103992
[15] Pengli 1 K cryostats products
[16] ZL Cryogenic 1 K cryostats products
[17] https://isite.baidu.com/site/wjzru1zo/96a2066c-8800-4095-9ec4-a0489538571f?ch=48&wid=6dfbf96df3554e288101d75dc1ec8912_0_0&uniqId=c4db65aa10714a8697008f3c034cf058
[18] Radebaugh R. 2009 J. Phys. Condens. Matter 21 164219
[19] Liu X M, Chen L B, Wu X L, Yang B, Wang J, Zhu W X, Wang J J, Zhou Y 2020 Sci. China Technol. Sci. 63 434
[20] http://zlcryogenic.com/display/141459.html
[21] Wang C 2016 Cryocoolers 19 299
[22] Wang C, Hanrahan T, Johnson M 2018 Cryogenics 95 64
[23] Wang C, Lichtenwalter B, Friebel A, Tang H X 2014 Cryogenics 64 5
[24] Qu Q X, Wang L G, Chen H, Dai N N, Jia P, Xu D, Li L F 2024 Cryogenics 138 103797
[25] Wu S G, Zhao B J, Tan J, Zhao Y J, Zhai Y J, Xue R J, Tan H, Ma D, Wu D R, Dang H Z 2023 Energy 277 127691
[26] Shen Y W, Liu D L, Chen S F, Zhao Q Y, Liu L, Gan Z H, Qiu M 2020 Applied Thermal Engineering 166 114667
[27] Li X, Xu D, Wang W, Lin P, Liu H M, Nishimura A, Shen F Z, Li L F 2019 Cryogenics 102 50
[28] Uhlig K 2002 Cryogenics 42 73
[29] Wang C 2001 Cryogenics 41 491
[30] Liu X M, Pan C Z, Zhang Y, Liao Y, Guo W J, Yu D P 2023 Acta Phys. Sin. 72 190701 (In Chinese) [刘旭明, 潘长钊, 张宇, 廖奕, 郭伟杰, 俞大鹏 2023 物理学报 72 190701]
计量
- 文章访问数: 28
- PDF下载量: 3
- 被引次数: 0