搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

制冷型红外成像系统内部杂散辐射测量方法

常松涛 孙志远 张尧禹 朱玮

引用本文:
Citation:

制冷型红外成像系统内部杂散辐射测量方法

常松涛, 孙志远, 张尧禹, 朱玮

Internal stray radiation measurement for cooled infrared imaging systems

Chang Song-Tao, Sun Zhi-Yuan, Zhang Yao-Yu, Zhu Wei
PDF
导出引用
  • 杂散辐射是红外光学系统设计和检测过程中涉及的一项重要指标.为了定量测量红外成像系统内部杂散辐射, 提出一种基于辐射定标的测量方法, 并通过理论推导和实验验证以说明该方法的合理性.首先, 建立了不带光学系统的辐射定标模型, 即探测器直接接收定标源辐射能, 获得探测器内部因素对系统输出的影响; 然后将其与带有光学系统的定标结果进行比较, 得到由光学系统自身辐射对系统输出的影响, 进而计算红外成像系统内部杂散辐射; 最后通过实验证明了本文理论的正确性.该方法操作简单, 对实验条件要求低, 并可以精确地测量红外成像系统内部杂散辐射.可用于指导红外系统设计中的杂散辐射抑制, 验证系统杂散辐射分析结果是否准确以及检测系统杂散辐射指标是否合格.
    Stray radiation is an important indicator for the infrared optical systems involved in the process of designing and testing. In order to measure the internal stray radiation in infrared imaging systems, a method based on radiometric calibration is proposed, and its rationality is verified by theoretical analysis and experiments. Firstly, the model of radiometric calibration without lens, in other words the detector for absorbing the radiation flux directly from the calibration reference source, is developed to show the influence of internal factors of the detector on the system output. Then it is compared with the results of calibration of the infrared system with a lens to obtain the system output results from the optical system, namely the internal stray radiation caused by the optical system. Finally, experiments are performed to prove the correctness of the theories proposed in this paper. The proposed method has some advantages, such as simple operation, low demand for the experimental conditions, and the capability of measuring the internal stray radiation accurately. It can be used to guide the stray radiation suppression in the process of infrared system designing, to verify the stray radiation analysis results, and to test whether the stray radiation level meets the practical requirements.
    • 基金项目: 国家高技术研究发展计划(863计划)(批准号: 2012AA121502)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA121502).
    [1]

    Hunt G H, Shelton G B 1977 SPIE. 107 146

    [2]

    Pravdivtsev A V, Akram M N 2013 Infrared Physics & Technology 60 306

    [3]

    Liu Y, An X Q, Wang Q 2013 Applied Optics 52 4

    [4]

    Xia X L, Shuai Y, Tan H P 2005 Journal of Quantitative Spectroscopy & Radiative Transfer 101

    [5]

    Peng Z Y, Wang X J, Lu J 2013 Acta Phys. Sin. 62 230702 (in Chinese) [彭志勇, 王向军, 卢进 2013 物理学报 62 230702]

    [6]

    Li Y, Liu J F 2013 Acta Opt. Sin. 33 0928002 (in Chinese) [李岩, 刘剑峰 2013 光学学报 33 0928002]

    [7]

    Howard J W, Abel I R 1982 Applied Optics 21 3393

    [8]

    Akram M N 2010 Applied Optics 49 964

    [9]

    Akram M N 2010 Applied Optics 49 1185

    [10]

    Liu Y, An X Q 2012 Acta Optia Sinica 32 0222007 (in Chinese) [刘洋, 安晓强 2012 光学学报 32 0222007]

    [11]

    Fest E C 2013 Stray Light Analysis and Control (SPIE)

    [12]

    Breault R P 1977 SPIE. 107 1

    [13]

    Liepmann T W 2009 SPIE. 7439 743913

    [14]

    Frank Grochocki, John Fleming 2010 SPIE 7794 77940W-1

    [15]

    Birkl R, Lange G, Manhart S, Maurer R 1988 SPIE 967 78

    [16]

    Birkl R, Lange G, Boeswetter C, Lamb G M 1994 SPIE 2260 128

    [17]

    Lightsey P A, Wei Z Y 2012 SPIE 8442 84423B-1

    [18]

    Fan M, Chen L F, Li S S, Tao J H, Su L, Zou M M 2014 Chin. Phys. B 23 104203

    [19]

    Siegel R, Howell J R 1972 Thermal Radiation Heat Transfer (Academic)

    [20]

    Wolfe W L 1998 Introduction to Radiometry (SPIE)

    [21]

    Palmer J M, Grant B G 2010 The Art of Radiometry (SPIE)

  • [1]

    Hunt G H, Shelton G B 1977 SPIE. 107 146

    [2]

    Pravdivtsev A V, Akram M N 2013 Infrared Physics & Technology 60 306

    [3]

    Liu Y, An X Q, Wang Q 2013 Applied Optics 52 4

    [4]

    Xia X L, Shuai Y, Tan H P 2005 Journal of Quantitative Spectroscopy & Radiative Transfer 101

    [5]

    Peng Z Y, Wang X J, Lu J 2013 Acta Phys. Sin. 62 230702 (in Chinese) [彭志勇, 王向军, 卢进 2013 物理学报 62 230702]

    [6]

    Li Y, Liu J F 2013 Acta Opt. Sin. 33 0928002 (in Chinese) [李岩, 刘剑峰 2013 光学学报 33 0928002]

    [7]

    Howard J W, Abel I R 1982 Applied Optics 21 3393

    [8]

    Akram M N 2010 Applied Optics 49 964

    [9]

    Akram M N 2010 Applied Optics 49 1185

    [10]

    Liu Y, An X Q 2012 Acta Optia Sinica 32 0222007 (in Chinese) [刘洋, 安晓强 2012 光学学报 32 0222007]

    [11]

    Fest E C 2013 Stray Light Analysis and Control (SPIE)

    [12]

    Breault R P 1977 SPIE. 107 1

    [13]

    Liepmann T W 2009 SPIE. 7439 743913

    [14]

    Frank Grochocki, John Fleming 2010 SPIE 7794 77940W-1

    [15]

    Birkl R, Lange G, Manhart S, Maurer R 1988 SPIE 967 78

    [16]

    Birkl R, Lange G, Boeswetter C, Lamb G M 1994 SPIE 2260 128

    [17]

    Lightsey P A, Wei Z Y 2012 SPIE 8442 84423B-1

    [18]

    Fan M, Chen L F, Li S S, Tao J H, Su L, Zou M M 2014 Chin. Phys. B 23 104203

    [19]

    Siegel R, Howell J R 1972 Thermal Radiation Heat Transfer (Academic)

    [20]

    Wolfe W L 1998 Introduction to Radiometry (SPIE)

    [21]

    Palmer J M, Grant B G 2010 The Art of Radiometry (SPIE)

  • [1] 吴曼瑾, 姚柏志, 石粒力, 陈本纹, 吴敬波, 张彩虹, 金飚兵, 陈健, 吴培亨. 用于超导太赫兹探测器的低温标准黑体辐射源研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220103
    [2] 陈明徕, 刘辉, 张羽, 罗秀娟, 马彩文, 岳泽霖, 赵晶. 剪切光束成像技术稀疏重构算法研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220494
    [3] 陆子晴, 韩勤, 叶焓, 王帅, 肖峰, 肖帆. 适用400 Gbit/s接收系统的铟磷基低暗电流高带宽倏逝波耦合光电探测器阵列. 物理学报, 2021, 70(20): 208501. doi: 10.7498/aps.70.20210781
    [4] 孙永丰, 徐亮, 沈先春, 金岭, 徐寒杨, 成潇潇, 王钰豪, 刘文清, 刘建国. 红外光谱辐射计探测器高阶非线性响应校正方法. 物理学报, 2021, 70(6): 060701. doi: 10.7498/aps.70.20201530
    [5] 夏茂鹏, 李健军, 高冬阳, 胡友勃, 盛文阳, 庞伟伟, 郑小兵. 基于相关光子多模式相关性的InSb模拟探测器定标方法. 物理学报, 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [6] 袁红辉, 陈永平. 非制冷红外探测器读出电路的非均匀性研究. 物理学报, 2015, 64(11): 118503. doi: 10.7498/aps.64.118503
    [7] 周彦平, 黎发军, 车驰, 谭立英, 冉启文, 于思源, 马晶. 量子点红外探测器在空间光电系统中的应用. 物理学报, 2014, 63(14): 148501. doi: 10.7498/aps.63.148501
    [8] 黄建微, 王乃彦. 基于蒙特卡罗方法的NaI探测器效率刻度及其测量轫致辐射实验. 物理学报, 2014, 63(18): 180702. doi: 10.7498/aps.63.180702
    [9] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征. 物理学报, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [10] 余波, 陈伯伦, 侯立飞, 苏明, 黄天晅, 刘慎业. 化学气相沉积金刚石探测器测量辐射驱动内爆的硬X射线. 物理学报, 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [11] 赵现斌, 孔毅, 严卫, 艾未华, 刘文俊. 机载合成孔径雷达海面风场探测辐射定标精度要求研究. 物理学报, 2012, 61(14): 148404. doi: 10.7498/aps.61.148404
    [12] 高博, 余学峰, 任迪远, 李豫东, 崔江维, 李茂顺, 李明, 王义元. 静态存储器型现场可编程门阵列总剂量辐射损伤效应研究. 物理学报, 2011, 60(3): 036106. doi: 10.7498/aps.60.036106
    [13] 周海洋, 朱晓东, 詹如娟. CVD金刚石辐射探测器研制及性能测试. 物理学报, 2010, 59(3): 1620-1624. doi: 10.7498/aps.59.1620
    [14] 江少恩, 李三伟. 辐射温度与其驱动Al冲击波速度的定标关系研究. 物理学报, 2009, 58(12): 8440-8447. doi: 10.7498/aps.58.8440
    [15] 李健军, 郑小兵, 卢云君, 张伟, 谢萍, 邹鹏. 硅陷阱探测器在350—1064 nm波段的绝对光谱响应度定标. 物理学报, 2009, 58(9): 6273-6278. doi: 10.7498/aps.58.6273
    [16] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [17] 孙可煦, 易荣清, 杨家敏, 王红斌, 马洪良, 陈正林, 黄天暄, 崔延莉, 郑志坚, 唐道源, 丁永坤, 温树槐, 江文勉, 赵永宽, 崔明启, 黎刚, 崔聪悟, 唐鄂生. 同步辐射软X射线源用于软X射线探测元件定标. 物理学报, 1997, 46(4): 650-655. doi: 10.7498/aps.46.650
    [18] 甘德昌. 热电探测器对辐射功率的响应. 物理学报, 1995, 44(1): 137-141. doi: 10.7498/aps.44.137
    [19] 李芳昱, 唐孟希. 空间阵列的狭窄波束型引力辐射. 物理学报, 1987, 36(12): 1570-1582. doi: 10.7498/aps.36.1570
    [20] 陈继述. 红外薄膜热电探测器分析. 物理学报, 1974, 23(6): 51-58. doi: 10.7498/aps.23.51
计量
  • 文章访问数:  3760
  • PDF下载量:  527
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-12
  • 修回日期:  2014-10-09
  • 刊出日期:  2015-03-05

制冷型红外成像系统内部杂散辐射测量方法

  • 1. 中国科学院长春光学精密机械与物理研究所, 长春 130033;
  • 2. 中国科学院大学, 北京 100049
    基金项目: 国家高技术研究发展计划(863计划)(批准号: 2012AA121502)资助的课题.

摘要: 杂散辐射是红外光学系统设计和检测过程中涉及的一项重要指标.为了定量测量红外成像系统内部杂散辐射, 提出一种基于辐射定标的测量方法, 并通过理论推导和实验验证以说明该方法的合理性.首先, 建立了不带光学系统的辐射定标模型, 即探测器直接接收定标源辐射能, 获得探测器内部因素对系统输出的影响; 然后将其与带有光学系统的定标结果进行比较, 得到由光学系统自身辐射对系统输出的影响, 进而计算红外成像系统内部杂散辐射; 最后通过实验证明了本文理论的正确性.该方法操作简单, 对实验条件要求低, 并可以精确地测量红外成像系统内部杂散辐射.可用于指导红外系统设计中的杂散辐射抑制, 验证系统杂散辐射分析结果是否准确以及检测系统杂散辐射指标是否合格.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回